
Linköping University | IDA
Bachelor thesis | Innovative Programming

Spring term 2016| LIU-IDA/LITH-EX-G--16/014—SE

Tracing user transactions through a
complex, multi-tiered business
application

Björn Kihlström
Simon Gustafsson

Tutor, Rita Kovordanyi
Examinator, Peter Dalenius

Copyright
The publishers will keep this document online on the Internet – or its possible replacement – for a period
of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All
other uses of the document are conditional upon the consent of the copyright owner. The publisher has
taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Björn Kihlström, Simon Gustafsson

http://www.ep.liu.se/

Tracing user transactions through a complex, multi-tiered
business application

Björn Kihlström
Institute of Technology, Linkoping University

bjoki902@student.liu.se

Simon Gustafsson
Institute of Technology, Linkoping University

simgu002@student.liu.se

ABSTRACT
This paper details the design and implementation of a software
tracing application, used to trace transactions across the different
layers and parts of a distributed enterprise system called IFS
Applications. The tracing system is evaluated based on
performance and usability in order to define some general
concepts regarding how to trace flow through a complex
enterprise system composed of many different components and
layers. The implemented system showed great potential in
accomplishing the goal of adding next to no overhead, but was
lacking in that it could not scale to support many clients over any
amount of time because of the amount of data generated.

Keywords
software tracing; monitoring; enterprise systems; distributed
systems; performance

1. INTRODUCTION
The development and design of complex business applications is
a long process during the entire life-cycle of the application.
When large amounts of business-critical data and functionality is
handled by the application in a multitude of services divided into
several layers of functionality, it becomes increasingly
challenging to diagnose a performance issue associated with a
particular transaction1.

This is especially true when the application setup varies across
different installations2 of the software. Technical support staff
face a challenge in determining which route a certain transaction
takes through the system. A customer's complaint of the system
being slow and non-responsive under certain conditions can lead
to a lot of time being spent on diagnosing where in the system
the problem resides.

Several existing monitoring tools are in place to monitor the
general state3 of the system. This generates an immense amount
of data for any particular installation, and correlating these data
with a particular issue is not a trivial task. A transaction in a
distributed environment is not a simple entity that travels from
point A to point B in a deterministic way. Rather, it travels along
a complicated path from the client through the system towards
the database through several nodes and is subjected to load-
balancing functionality as well as traffic through third-party
modules with unknown internal implementation specifics along
the way before it travels back to the client with a response.

1 By “transaction”, we mean a call from a client to the system
and all associated network traffic and code execution inside the
system up to and including the response to the client.

2 By “installation” we refer to an actual existing setup of the
system in a production environment.

3 By “state”, we refer to all factors that may affect the
performance of a particular node, including things such as
network load and hardware state.

Therefore, it is necessary to be able to trace such a transaction
through the system to be able to correlate the already existing
information about system state with a particular performance
issue. Which node in the system it is that actually stalls the
performance is a key piece of information. This complements the
information already obtained by monitoring tools already in place
and makes the information these provide more useful by
narrowing the scope to the node where the performance issue
arises.

The problem of monitoring complex business applications
distributed across several machines is a challenge in itself. It is
also not new. Joyce et al. [7] studied the problem in 1987 and
identified several problem areas that still hold as a main focus of
work in the area today. The difficulty of reproducing a given error
that results from a possible but improbable execution path was
already outlined in their work.

Around the same time, Wybranietz et al. [14] developed a system
monitoring application for distributed systems and managed to
outline several practical problem-areas for such implementations.
A solution to the inherent non-determinism and the resulting non-
reproducibility of a transaction was implemented as a real-time
surveillance of the system. The paper also outlined the need to
minimize the performance hit resulting from such an
implementation and laid down some ground-work for the
principles that govern implementation of such monitoring.

The problem of the non-reproducibility of the state of a
distributed system is not new and has been studied since at least
the early 90's [6]. Many different monitoring tools have been
developed since then (such as GLIMPSE [3]) and the issue is
still a subject of research.

1.1 Objective
In this work we implement and evaluate a solution for tracing
specific transactions through a distributed business application.
The data gathered by this implementation complements data
from other, already existing monitoring tools and should be
independent of these tools as their exact nature varies across
installations. We are concerned with discerning where a problem
occurs so that other monitoring tools can be used to figure out
why. The system must be able to perform a trace in real time (or
as close to real time as possible) as well as after the transaction
is completed or has failed.

A challenge associated with such an implementation in a
business environment is that no significant further overhead may
be introduced by such a monitoring service. Apart from that, the
implementation of the service must be done in such a way that no
security issues that were not already present in the original
business application may be introduced.

1.2 Research questions
Through the implementation of the tracing system in the given
context, we aim to examine the following questions:

1. What kind of data needs to be collected in order to
trace a transaction through a distributed business
application; and to do so with sufficient detail and
accuracy to be able to identify points of interest for
diagnosing a performance issue?

2. Given that the answer to the first question is known, is
it possible to collect the required amount of data
without introducing significant further performance
degradation?

1.3 Context and limitations
To answer these questions, a tracing system as described above is
implemented in the context of an already existing, large business
application. The chosen application for the purposes of this study
is developed by IFS4, a developer of enterprise systems. The
application is called IFS Applications5, being their core product.
The application is already monitored by a number of other tools,
making its state known at any given time.

The tracing system implemented follows a transaction originating
from the graphical client called IFS Enterprise Explorer as it
makes its way through different parts of the system. It is limited
to transactions originating from this client and it is also limited
to modules that are developed by IFS and which are part of IFS
Applications. Transactions originating from other clients or
which take paths through third-party modules connected to IFS
Applications are not taken into consideration.

Whatever overhead is introduced by other tools in place is not
the focus of the study. How the data is to be correlated with the
output of these other tools is also not the focus of the study:
Rather, the focus is enabling the possibility of correlation. No
attempt at automatically correlating the data is within the scope
of this study. Rather, this has to be done manually, and the
purpose of our implementation is only to provide useful data in
order to be able to pinpoint the location of the failure or
performance bottleneck.

Network propagation delays, caused by congested networks or
physical distance, is known to be a possible cause for transaction
latency in existing installations and can as such not be ignored.
Our implementation has to function even when a network is
congested or if different parts of the system are located at a great
physical distance from one another.

The nature of the data processed by IFS Applications and the fact
that access-control policies may need to be enforced on the
gathered information makes it a priority to not keep restricted
information on a central logging server unless it is guaranteed
that it can enforce the same, or more restrictive, access policies
as the actual node. This introduces the need to make sensitive
data more anonymous, so that business-critical details do not
leak into the trace.

2. THEORY
Due to the fact that the problem area is well known among
developers of distributed systems, many different takes on the
problem have been proposed and implemented in the past. We
aim to take this into account when carrying out our study on the
subject. Large commercial actors have developed general
solutions for carrying out software monitoring, and academic
studies have evaluated alternative design patterns.

4 See http://ifsworld.com for more information.
5 See http://www.ifsworld.com/en/solutions/ifs-applications/ for

more information.

A paper by Sambasivan et al. [10] compares several existing
implementations (both those that are developed as research
projects and purely industrial applications) and different
algorithms for establishing transaction paths through systems. It
also outlines specific use-cases for certain approaches. These
observations are useful when considering what is a reasonable
approach in our case.

2.1 Technical background
Many different tools exist to carry out the general task of
collecting monitoring data in a single location, which is
necessary for software tracing. Facebook once developed a
framework called Scribe, which has since been discontinued
from active development [15]. Scribe aimed to collect all log data
from a distributed system in a single location, adding minimal
amounts of overhead. The source code is now available under a
FOSS6 license, but is not maintained.

Apache Flume [16] is another FOSS implementation that aims to
solve the same problem which is still actively developed and
maintained. It is able to collect all logs in one place through
minimal overhead. It is, however, not a complete monitoring
application as much as it is a framework that can be used to build
one. It is written in Java and exposes a Java API.

A third FOSS alternative is Fluentd [8]. It is largely written in C
(with some Ruby parts) and aims to log everything it receives in
JSON format. It is designed to be usable as a base for a logging
layer in a distributed system. Fluentd does not support the
Windows platform, which is a major problem because of the
context of this study. Therefore, it is not an alternative to base
our implementation on Fluentd.

An application that very closely mimics the behavior we want to
accomplish is Zipkin, employed by Twitter [17]. It gathers traces
from a distributed application and displays them via a web-based
UI. It is more of a complete solution than one that can easily be
customized according to individual needs.

2.2 Related work
An academic evaluation of a tracing system similar to what we
set out to accomplish is the implementation and evaluation of
Pinpoint [4]. Pinpoint was aimed at tracing transactions through
a distributed system and correlating the traces and request
information with error occurrences in order to establish patterns
for what transactions are more likely to fail and in which nodes
this happens. However, one of the assumptions made in the
development of Pinpoint was that transactions fail irrespective of
other transactions as a result of their own intrinsic
characteristics. We do not make this assumption in our work, as
IFS reports that very few of the performance issues associated
with their application are caused by bugs. Rather, we make the
assumption that a transaction fails as a result of the system's
state.

In some ways, a paper by Aguilera et al. [1] falls more in line
with our take on the subject. The purpose of their proposed
implementation was not to automatically correlate a given
transaction with the cause of failure. Since the nature of the
nodes in question could not be known in the context of their
work, the ambition was only to provide the path of ill-performing
transactions and the context in which they performed badly in
order to aid manual analysis. On the other hand, Aguilera et al.
did not propose a solution for real-time tracing, instead relying
on analysis after the fact. The work is also based on the

6 Acronym for “Free and Open Source Software”. See
https://opensource.org/licenses for more information.

https://opensource.org/licenses
http://www.ifsworld.com/en/solutions/ifs-applications/
http://ifsworld.com/

assumption that all parts of the service to be analyzed are part of
a local network and that network propagation delays did not have
to be taken into account.

Another attempt to determine the cause of failure in ill-
performing transactions is Pip [9]. This implementation is
different from ours in that it takes the approach of first having
the developers and maintainers specify the expected behavior of
the system and then look for transactions that do not correspond
to this behavior. Since expected behavior may be very difficult to
determine in the context of our study, we consider this approach
out of scope. Other similar takes on the subject exist, such as the
approach proposed by Textor et al. [13]. They are different from
what we aim to implement for the same reasons as Pip.

A paper by Animashree et al. [2] describes the feasibility and
algorithmic complexity of a tracing system which is based on the
footprints generated in local log files. The analysis of such a
tracing system presented in their work supports the notion that
our take on the issue is possible, as the context of our work
includes a system that does not correspond to the proposed worst
case scenario presented. However, Animashree et al. did not
implement such a system.

An actual implementation that is superficially similar to what we
aim to implement is X-Trace [5]. Many concerns that have to be
taken into account during our work were discussed when
implementing X-Trace, such as maintaining the security policies
of the application. However, this is a very generalized
implementation that is meant to operate by attaching extra
metadata to all network requests, which can not be done in the
context of our work.

A work that is often referred to in an industrial context is a paper
published by Google detailing the implementation and design of
Dapper [11]. In this document, main design concerns are laid
down and many other applications (for example, Zipkin [17])
boast that they are compliant with these design principles.

2.3 Theoretical implications
One thing all software tracing tools have in common is the
presence of central logging by sending logs over the network. A
key focus in our study is performance, and the most expensive
operation in this respect is a network transfer. Therefore, it
becomes natural for our study to minimize the amount of network
transfers.

There are a few possible takes on this subject. A common
solution is to send several entries at once in batch network
transfers, perhaps even delaying the sending of logs in conditions
of high network load. This approach is pivotal to reducing
network load.

3. METHOD
The method is divided into four parts, each detailed in this
section. The first part is a feasibility study where IFS
Applications is examined and important points of interest 7 for
generating a comprehensive trace are identified. Further, the
identified points are categorized and the possibility of local
logging is evaluated for each category along with the necessity
and usefulness associated with logging the point at all.

The second step is the implementation of a prototype
corresponding to the conclusions drawn in the feasibility study.
The implementation consists of the tracing application itself and
a simulated system that mimics the behavior of a distributed

7 A point of interest is defined as a system event that potentially
can be used to identify a performance issue in the system.

business application that can run on virtual machines to allow for
easy testing in a controlled environment.

The third step is a performance evaluation. The simulator is
subjected to a series of stress-tests both when tracing is enabled
and when it is disabled. This allows for accurate measurement of
the imposed overhead in a controlled environment.

The fourth step is evaluating the usefulness of the produced
traces. This is done by attaching the tracing system to a sandbox
installation of IFS Applications and making observations from
the gathered trace data.

3.1 Feasibility study
The feasibility study is conducted along with IFS staff by
reviewing the system and identifying points of interest. Each
point of interest is written down on a card along with a general
description of the event. The purpose of this is to provide a basis
which can be used to answer RQ1. Points of interest are
candidates for logging and can be used to identify the amount of
data that needs to be collected to produce a comprehensive trace.

The second part of this step is to use this information to guide
the strategy for the implementation. To do this, the cards are
categorized by any emergent properties which they have in
common, a process called open card sorting8. Once the points of
interest have been categorized, which ones are good candidates
for logging can be evaluated.

When examining a point of interest, it becomes necessary to have
a certain set of criteria for defining which are to be taken into
account. A first criteria to qualify as a point of interest is
generality, here defined as a point traversed by all transactions
regardless of the implementation of the business logic. Potential
points where the only way to produce trace logs would be to
manually hard-code the logging calls inside business logic are
immediately discarded and does not make it past system review.

Evaluation of the usefulness of any categories of points of
interest for a trace is done based mainly on two further criteria.
The first of these is redundancy. Redundant information is
defined as information that can be inferred from other points of
interest. This makes the point irrelevant to the trace and thus
non-useful.

The second criteria is ambiguity. Non-ambiguous information is
defined as information that can only produce a single trace where
all continuous steps taken can be inferred, whereas ambiguous
information can either produce several traces, or a single trace
that can not be used to determine the series of events accurately.

Redundant information is considered a more relevant reason to
exclude a point from the solution than ambiguous information (as
long as it is not also redundant), because ambiguous information
could still be useful if interpreted manually by someone with an
understanding of how the system works.

3.2 Implementation
In this part, the system prototype is implemented as two
components. The first component is a simulator made to behave
in a way similar to an installation of IFS Applications. The actual
simulator is made up of nothing but logging events, sleep calls,
and communication over the network (with the possibility of
disabling the logging events). The simulator must be able to
simulate different scenarios.

The second component is the tracing service itself. It is
connected to the simulator and receives the logs which are used
to create traces. The development of this service is based on the

8 Cards are sorted by the authors based on perceived similarities.

conclusions drawn in the feasibility study and are refined during
development as part of an agile process in coordination with IFS.

3.3 Performance evaluation
The third step is evaluating the prototype with respect to RQ2. In
the context of the simulated system, it is possible to draw the
conclusion that the difference in execution time of a simulation
with tracing enabled compared to the same simulation with
tracing disabled is exactly equal to the performance overhead
introduced by the tracing service.

In order to evaluate if the implementation meets the performance
requirements, several simulations are executed both with and
without tracing enabled. The execution times of the simulations
are then compared. Each scenario is executed several times in
order to produce an average execution time. The difference in
average execution time is then used to answer if a solution
providing an answer to RQ2 has been implemented. The solution
is considered to fit the requirements if a realistic simulation
scenario performs at 1 millisecond per log event or better. 1
millisecond is chosen because it is the smallest unit of time that
can be measured using the system clock of a Windows 7
computer.

3.4 Usability evaluation
The usability evaluation is aimed at finding support for the fact
that RQ1 was answered correctly and ascertain that there are no
serious performance issues in a real production environment that
were not discovered during the simulation. This step is based on
ascertaining that the tracing system can in fact produce the
desired information when attached to the real application, and
that this information is structured in such a way that it is actually
possible to use the system for its intended purpose.

This step is based on general observations and an open
categorization of problems discovered, outlining problematic
areas that need to be addressed before deploying this application
in any kind of production environment. These tests are done by
collecting data from IFS Applications and attempting to examine
and filter traces in a way consistent with common use-cases. Any
problems that occur during the use of the tracing system are
noted. Results are displayed in the form of general observations.

4. FEASIBILITY STUDY
The feasibility study was conducted during a period of one week
in cooperation with IFS staff. The general structure of the system
was studied in order to identify points of interest which were
then categorized and evaluated. The results of the feasibility
study is divided into several sections, each corresponding to a
component of the study.

4.1 System review results

All transactions follow a certain path through the system
components that can be seen as common ground between all
transactions. This generalized path was examined in order to

identify points of interest. Figure 1 illustrates an overview of the
system design.

Every transaction is sent from the client to a server which
presents an interface to the client (henceforth called a
“presentation server”). The presentation server is largely
disconnected from the rest of the system and contains no points
of interest which are realistic to include in the trace. Any attempt
to do so would require hard-coding the logging calls into the
presentation logic, which excludes them immediately.

The presentation server, in turn, sends the request forward to a
server handling business logic (henceforth called “middleware
server”). This server is part of IFS Applications and has a well-
defined internal structure. Every transaction targets a subset of
functionality defined as an activity, which contains a number of
methods. Methods can then invoke other methods or send a
request to a server running a database (henceforth called a
“database server”). There are some realistic points of interest
here.

1. The arrival of a request to the middleware server from
the presentation server.

2. Before invocation of a specific method inside an
activity.

3. After a method inside an activity returns.

4. Before a method makes a request to the database
server.

5. After a request to the database server returns.

6. Before a reply is sent to the presentation server after
the request is completed.

Regarding the database server, some requests sent here do not
lead to the execution of much code, but rather a database query
which returns immediately upon completion. In other cases,
programmatic database procedures are invoked for more complex
tasks. These present one possible point of interest.

7. When a programmatic procedure is invoked.

Unfortunately, there is no way of knowing when such a procedure
has returned aside from logging manually in each programmatic
procedure as soon as any further calls return. Otherwise, this
would also have been a point of interest.

Figure 1: General overview of the system. Every server in
this figure could represent several servers subjected to load

balancing.

Figure 2: Flowchart illustrating the flow of a standard
transaction through the system with the points of interest

included.

Two additional points of interest lie in the client software, where
logging is possible.

8. Before sending a request to the presentation server.

9. After receiving a response from the presentation server.

Aside from this, no further points of interest that fit our criteria
could be identified during the review. Figure 2 illustrates how a
transaction moves through the system and where the identified
points of interest occur.

4.2 Open card sort results
The system review yielded 9 points of interest. One natural first
step in the sorting process was deemed to be a division based on
where in the system the point of interest resided. As such, the
first three emergent categories were the following:

• Client points, containing the points 8 and 9.

• Middleware points, containing points 1 through 6.

• Database points, containing only point 7.

Regarding the middleware points, two stood out as different from
the rest. Points 2 through 5 could happen any number of times in
a transaction depending on what actions are taken by the invoked
method. Points 1 and 6 happen only exactly once during a
successful transaction. Point 1 always happens first and point 6
always happens last. As such, they are the only points of interest
within this category which occupy completely deterministic
locations in any generated trace.

Furthermore, point 1 is always followed by a method invocation,
causing point 2 to be triggered. Similarly, point 6 is always
preceded by a return from a method, triggering point 3. This
makes points 1 and 6 stand out as possibly more redundant for
tracing purposes than the other middleware points. Therefore, the
final result of the open card sort is as follows:

• Client points, containing points 8 and 9.

• Middleware points, containing points 2 through 5.

• Middleware points (possibly redundant), containing
points 1 and 6.

• Database points, containing only point 7.

4.3 Implications for implementation
Regarding the client points, both happen exactly once during a
successful transaction. They also occupy completely deterministic
positions in any trace (8 always being first in the trace and 9
always being last). This makes for a certain amount of
redundancy as their position can always be inferred. In the cases
where this redundancy does not present itself, such as when a
transaction fails before it reaches the middleware server or after
it returns to the presentation server, the information is instead
ambiguous.

Because the presentation server cannot support tracing, any error
between the client and the middleware server would result in one
of two possible traces (either the request never reaches point 1 or
it never reaches point 9 after it has logged point 6). From any of
these traces, it can not be determined where the point of failure
resides.

A time stamp from the client may be useful to the trace in some
cases, but this information is also ambiguous because the clock
on the client may or may not be synchronized with anything else
in the system. In addition, the client is disconnected from IFS
Applications even more so than the presentation server; the
request may even travel through the world wide web and thus
making any diagnosis of delays incurred impossible. Because of

all this, our results indicate that client-side logging will not be
implemented for the sake of the study.

Regarding the middleware points, the first middleware category
produces non-redundant and non-ambiguous information about
non-deterministic execution paths. According to our criteria this
makes these points essential for tracing a transaction through the
middleware server.

The possibly redundant middleware points produce information
that can possibly be inferred by the points of the previous
category. All transactions trigger point 2 directly after point 1 in
the trace and also trigger point 3 right before point 6. As such,
points 1 and 6 may be redundant, depending on the amount of
information available at this stage compared to points 2 and 3.
The redundancy also depends on the amount of pre-processing
done between point 1 and the first occurrence of point 2 as well
as the amount of post-processing done between the last
occurrence of point 3 and point 6. Since these are done on the
same server the time stamps of the points can be expected to
provide useful information about any such processing.

The amount of traffic that could be saved by not logging this
information is also questionable since the other middleware
points happen more often, particularly if the sending of trace logs
is performed using batch operations. With this motivation, the
logging of these events is implemented for evaluation in the test
environment.

The only point in the last category, point 7, happens with
requests to the database server which cause the execution of
programmatic procedures. When it does happen it produces non-
redundant but somewhat ambiguous trace information. The
reason for this is that it is impossible to trace when such a
procedure returns.

Point 7 may although be useful anyway as it contains non-
redundant information. Access to and understanding of the
procedure source code also greatly alleviates this ambiguity. For
this reason it is implemented in order to evaluate it during the
performance and usability evaluations.

5. IMPLEMENTATION
The chosen approach, consistent with the functional demands, is
to base the implementation on Apache Flume [16], mentioned
earlier, to move the logs as quickly and efficiently as possible to
a log server where the logs are stored in a NoSQL database
called OrientDB9.

An API for generating traces to be consumed by Flume was also
developed to be used from within the monitored application. The
main components of the system are, however, Apache Flume and
OrientDB (via the custom sink). All custom components aside
from stored functions in OrientDB are written in Java.

Aside from this, a simulator was developed to use the API in
order to generate static traces for the purpose of measuring
performance. This was also written in Java.

5.1 Apache Flume
Apache Flume is a framework designed to move large amounts of
log data as efficiently as possible. Its primary purpose is to move
logs to Apache HDFS which is part of a project called Hadoop10

but it is designed with the inherent possibility of being extended
and used for other purposes. It has the inherent advantage of
providing reliability even in conditions of high network load,
which solves one of the key issues associated with the

9 See http://orientdb.com/orientdb/ for more information.
10 See http://hadoop.apache.org/ for more information.

http://hadoop.apache.org/
http://orientdb.com/orientdb/

implementation. In such conditions, trace logs are sent at a
slower rate but are guaranteed to ultimately arrive at the central
logging server.

The ability to transfer large amounts of log data using Flume
narrowed the scope of the project to the endpoints of a series of
chained Flume processes running on different hosts. A Flume
process is called an agent and is made up of several components.
Each component is an implementation of a well-defined Java
interface. The most important ones are the source, the channel
and the sink. An agent consists of one or more of each
component.

The source is an implementation of a way to consume log data
from an application. A channel is an implementation of a buffer
where events are queued between being consumed by the source
and being sent to the sink. A sink is an implementation of an
endpoint where events are sent after being buffered. The sink
may be some form of storage or be chained to the source of
another Flume agent. Figure 3 illustrates the structure of a Flume
agent.

The implementation of the tracing system consists of three
custom Flume components. One custom source which consumes
logs from an Oracle database table, one custom event deserializer
(which is an interface used by a standard source) which
deserializes events from a JSON format and one custom sink
which persists the traces to an OrientDB database.

5.2 OrientDB

OrientDB is a NoSQL database which is a hybrid between a
graph database (like Neo4J11) and a document database (like
MongoDB12). The trace logs and any collected statistics gathered
from the tracing system follows the pattern of being mostly semi-
structured data with many relations. Since OrientDB combines
the schema-less nature of a document database with the support
for graph database relations that are traversed in constant time

11 See http://neo4j.com/ for more information.
12 See https://www.mongodb.com/ for more information.

without the use of costly JOIN-operations, it was deemed a good
fit for representing trace information.

The custom Flume sink implemented as part of the tracing
system communicates with OrientDB and is responsible for
constructing comprehensive traces natively in the database. As an
event arrives to the sink, it is first examined to determine which
point of interest it is associated with. This information is then
used to correlate the event with any sequence already constructed
for a certain transaction. An event is stored as an entry, known as
a “vertex” in OrientDB, and correlation is done by creating
relations between these vertices, called “edges” in OrientDB.

Edges have a name and are directional in the sense that they
store a direction as part of their logic. They can, however, be
traversed in either direction. These relations are used to
efficiently traverse a trace and correlate it with other associated
information. The transaction itself is associated with a vertex,
and all events, called “hops” in this implementation contain an
edge pointing to such a transaction vertex. Each hop is also
connected to the next hop in the transaction. Furthermore, a
transaction has an edge pointing to the first hop in the trace.
Hops contain properties specifying the point of interest, a time
stamp and sometimes additional information.

Hops corresponding to a point of interest which is a return of
something else (a method return, a database return or a return to
the presentation server) also have an edge pointing to the hop
corresponding to the associated initialization (a method
invocation, a database call or a received request from the
presentation server). These build a logical structure that
separates code executed in different stack depths and layers.
Figure 4 illustrates how a transaction is stored in the database.

Other vertex types exist for utility reasons. A transaction vertex is
pointed to by one or more user vertices involved, enabling sorting
transactions by user. Hops also have edges pointing to vertices
describing known parts of the system, enabling sorting hops and
transactions based on the methods involved, the server executing
the method and other unifying properties. The purpose of this is
to be able to follow a trace along the path it takes through the
system at a topological level and to also be able to visualize the
path on this level.

A bonus feature achieved from these additional vertices created
to enable easy diagnosis of ill-performing transactions is
indirectly constructing an entire topological map of the monitored
system as it is used. It is possible that this enables other uses of
the tracing system, but evaluating those uses is not the focus of
the study. They are touched upon later in this paper, but not in-
depth.

The most practical way to navigate through the data stored in
OrientDB, using OrientDB Studio13, is to write stored functions.
Functions like this have been written during development in
order to efficiently retrieve desired information, such as
unfinished transactions or unusually slow execution times. There
are three different languages available for native functions in the
database (SQL, JavaScript and Groovy), but most of the
functions in this implementation are written in JavaScript.
However, these would not be used if a graphical client
application existed.

13 OrientDB Studio is a web-based graphical database
administration tool with a visualizer that can be used to view
OrientDB graphs. Since no graphical user interface was
developed for the sake of this study, OrientDB Studio was used
to visualize the generated trace data.

Figure 3: Simplified illustration of a Flume agent and its
components.

Figure 4: Simplified illustration of the way a trace is stored
in the database.

https://www.mongodb.com/
http://neo4j.com/

5.3 The simulator
The simulator used during performance evaluation is
implemented as a middleware simulator. Because no points of
interest exist on the client or presentation server, these can easily
be ignored for overhead measurements. The middleware
simulator therefore acts as if one or more clients were making
requests to it via a presentation server, but in reality the
simulator starts transactions on its own.

The simulator is a simple Java program that accepts instructions
in the form of command line arguments. These are used to
determine whether or not tracing should be enabled, how many
transactions should be executed as well as how many points of
interest of which type to simulate during a transaction.

The simulator uses busy waits in order to simulate processing
rather than sleep calls, as a sleep call would cause the running
thread to become idle which is inconsistent with the way
processing is done in a real environment. This way, measuring
overhead becomes more realistic as Flume has to compete with
other processing when consuming trace data.

The simulator uses the Java tracing API to produce trace logs, in
the same way as IFS Applications. The Flume agent is set up
using a spooling directory source (a standard Flume source
reading files in creation order from a specified directory) with a
custom deserializer, parsing one JSON object into a Flume event
per line. A memory channel (a standard Flume channel which
buffers events in memory) is used for buffering. The sink on the
simulator is forwarding the events to another Flume agent using
a Thrift sink (a standard Flume sink sending events over the
network using the Thrift [12] RPC protocol to be consumed by a
corresponding standard Thrift source). The simulator runs on a
Windows 7 laptop.

The simulator also uses Oracle's JDBC14 driver to simulate
database requests. The database procedures executed simply
insert log events into a table on the database server. The database
server resides in a virtual machine cluster provided by IFS and
provides an Oracle Database15 This server runs a Flume agent
which uses a custom source to consume events from the table
using the same JDBC driver. In all other ways except for the
source, it is set up the same way as the Flume agent on the
middleware simulator laptop.

14 JDBC is short for Java Database Connectivity, and it is a driver
to connect to and communicate with an Oracle database from
Java code. More information can be found in this FAQ:
http://www.oracle.com/technetwork/topics/jdbc-faq-
090281.html

15 See http://www.oracle.com/us/corporate/features/database-12c/
for more information.

The log server is running on a Windows 7 laptop with a Flume
agent accepting events from a Thrift source (a standard Flume
source that can be connected to a Thrift sink). It uses a larger
memory channel than the other agents, as to not easily become
congested when accepting events from more than one agent. The
log events are then persisted to the database by the custom
OrientDB sink. Figure 5 illustrates the entire setup of the lab
environment.

6. PERFORMANCE EVALUATION
Four scenarios were simulated for the purpose of evaluating
performance through stress tests. All scenarios were simulated
with and without tracing enabled. The system clock was used for
measuring time during the simulations. All scenarios conform to
the flow described in figure 2, but not all correspond to realistic
transactions. Table 1 summarizes the executed scenarios.

Scenario Transactions Database
trace logs

Middleware
trace logs

1 10 1000 520

2 10 10000 4220

3 10 0 2220

4 10 10000 60

Table 1: Description of the simulated scenarios.

The purpose of the simulation was to carry out a stress test; and
transactions generating more than 1000 trace logs, like the
simulated ones, do not occur in reality. Scenarios 3 and 4 in
particular do not follow the distribution of logging event found
during normal operation (see Usability Evaluation for more
information). They were designed to isolate one single type of
trace log to as large a degree as possible in order to evaluate the
Java API and the database logging separately. Table 2
summarizes the results of the simulations. Each simulation was
executed 10 times with logging enabled and 10 times with
logging disabled.

1 (en) 1 (dis) 2 (en) 2 (dis) 3 (en) 3 (dis) 4 (en) 4 (dis)

8330 6849 68173 57250 54132 53913 41122 26567

7753 6864 67736 56922 54007 54007 44523 15881

8393 6755 68567 56408 54023 54040 44351 42604

8471 6755 64039 56360 54007 53977 40374 11403

7628 6739 65833 56127 54007 53961 45615 11154

7550 6739 63383 55987 54039 54070 43914 11341

7519 6771 63664 56721 54008 54055 40747 11888

7269 6771 64272 56004 53960 53977 46567 13322

7535 6739 63415 56051 53977 54055 45210 12917

8623 6770 64238 56378 53973 54085 43649 12418

Table 2: Total execution times in milliseconds of all executed
simulations, both with tracing enabled (en) and disabled

(dis). Values that deviate from the trend of the result set are
marked with gray.

Figure 5: Illustration showing the setup of the simulator in a
lab environment.

http://www.oracle.com/us/corporate/features/database-12c/index.html
http://www.oracle.com/technetwork/topics/jdbc-faq-090281.html
http://www.oracle.com/technetwork/topics/jdbc-faq-090281.html

From these measurements an average overhead can be calculated
as the difference between the average execution times with
tracing enabled and disabled for each scenario. The most
interesting statistic is the overhead per traced point of interest in
each scenario, which is calculated by simply dividing the average
overhead with the amount of trace logs generated. Table 3
summarizes the results of these calculations.

Scenario 4 produced 2 highly deviating values during
measurement with tracing disabled. The result set with these
values included has a standard deviation of about 10,000
milliseconds, which is 5 times higher than the corresponding
standard deviation for the result set with tracing enabled (at
about 2000 milliseconds). Removing these deviating values
produces a smaller result set with a standard deviation of around
1500 milliseconds, which is more similar in scale. This smaller
result set is also displayed in table 3.

Scenario Average
time (en)

Average
time (dis)

Average
overhead

Average
OH per log

1 7907.1 6775.2 1131.9 0.745

2 65332 56420.8 8911.2 0.627

3 54013.3 54014 ~0 ~0

4 43607.2 16949.5 26657.7 2.650

4 (adj) 43607.2 12540.5 31066.7 3.125

Table 3: Average execution time, overhead and overhead per
trace log for each executed scenario. The bottom row is

scenario 4 with the deviating values removed from the result.

The difference in execution time in scenario 3 indicated that
overhead was slightly negative. Those result sets had a standard
deviation of around 50 milliseconds however, which is 100 times
larger in magnitude than the negative difference. The overhead is
therefore equivalent to 0 because it is too small to be measured.

Interpreting the data directly indicates that scenarios 1,2 and 3
are within the limits of what has been considered acceptable
overhead while scenario 4 is not.

7. USABILITY EVALUATION
A virtual machine running an installation of IFS Applications in a
sandbox environment was used to test the tracing application on
a real system. Data was collected by starting IFS Enterprise
Explorer and pressing random buttons for between five and ten
minutes. Earlier tests using the same method had been done
during implementation as a sanity check in order to ensure that
the tracing application was correctly implemented and able to
handle actual trace data. The usability was not evaluated during
these earlier tests, except for one observation made.

• The data generated was very large in volume, which
made the database very large in size. During an early
test, the tracing system ran for three minutes on a
system with one mostly idle client active. This
generated a database of over 2000 vertices and over
19,000 edges. The database reached 77MB in these
three minutes. If that is an indication of how fast data
accumulates, one mostly idle client would generate
42GB of data in one day. This exposes a need to filter
or reduce data.

During the actual usability evaluation further observations were
made, focusing on the usability of the system by examining
generated trace data using OrientDB Studio.

• IFS Applications itself generates a lot of trace data
behind the scenes requiring no user input. Active
clients execute background jobs even when idle which
generate even more trace data. This means that most
traces are not interesting for diagnostics purposes.

• It is very hard to find a way to programmatically and
generally identify which traces are interesting for
diagnostics purposes. Some obvious non-interesting
traces could be identified, but many traces look very
similar; no matter if they are a result of user interaction
or a periodic background job.

• Not all transactions follow the model described in
figure 2. The tracing system handles these correctly as
well, but it is worth noting that this can not be taken
for granted.

• Given that an interesting transaction can be identified,
it is easy to follow a trace and locate possible causes of
bad performance.

• It is very easy to find transactions that have frozen
before they have finished. A simple database query can
return a list of those.

• The data is structured in such a way so that it allows
for a multitude of use-cases beyond diagnostics. Easy
access to statistical and topological information
generated during tracing allows for unintended use-
cases as a side effect.

• The tracing application is fast enough to follow a
transaction in real-time.

One thing that could be noted was that the bonus feature of
generating a topological map of the system as it is monitored
allows for many other uses beyond performance diagnostics. One
of these is simple visualization of the monitored system. When
combined with other trace data, it could not only increase the
readability of a trace by allowing for it to be visualized on a
topological level; it could also be used for such purposes as
generating statistics regarding system use, finding common
performance bottlenecks and finding points in the system where
transactions are likely to intersect.

The tracing application can be considered to be mostly useful for
its intended purpose, as well as potentially useful for some other
unintended use-cases; but a graphical client would have to be
developed to put it to use.

Only one known limitation exists which causes the tracing
application to sometimes generate faulty trace data. In some rare
cases, traces where many different points of interest in both the
middleware and database layers occurred within such a short
period of time that the system clocks of the machine running the
monitored application did not have the granularity to differentiate
their time stamps, were encountered. Trace data from different
layers arrive at the sink asynchronously. This is not a problem if
they have different time stamps, and most of the time not even if
they have the same time stamp.

The exception to this rule is were these sequences of trace logs
with the same time stamp contain multiple database calls as well
as programmatic database procedure events. In these cases, it is
not possible to correlate the procedures with the correct database
call using any available data. As such, the tracing application
generates the wrong sequence in these rare cases.

8. DISCUSSION
The implemented system mostly conforms to given demands. The
single largest problem is the amount of data persisted to the

database. One idle user would generate 42GB of data per day. A
thousand idle users would generate 42TB instead. If those users
were not idle, but instead actively used the system, this would
amount to hundreds of terabytes per day which is unmanageable.

Aside from the issue of storage, the amount of worthless data
persisted to the database drowns out the interesting data and
makes it hard to find. It is also hard to find a reliable way of
determining which traces are interesting, which further adds to
this problem. A possible solution is to partially take the approach
of specifying in advance how the system works, used for instance
by Pip [9], and base some kind of filtering mechanism on this.

One possible take on the subject of reducing the amount of
persisted data would be to reduce the points of interest taken into
account. This would have to be done in line with the priorities
laid down during the open card sort in such a case. However, the
amount of storage space saved in contrast to the loss of
usefulness makes such a solution unfavorable.

Which point of interest a trace log is tied to has no relation to the
usefulness of the trace. Eliminating points of interest across all
transactions would cause important data to be lost, and the more
data that could be saved by doing so, the more useful information
would also be lost. Therefore, filtering out entire useless
transactions is a more fitting solution in order to save storage
space.

8.1 Evaluating performance results
The data from the simulations indicate a case where tracing in
the database layer is more expensive than tracing in the
middleware. This result, combined with the observations when
testing the tracing application with a real installation of IFS
Applications puts into question the correctness of the simulator.

During testing with a real system, cases where entire procedure
chains of more than five procedures were logged within a
millisecond were observed in trace data. Examining the
simulation data, this would be impossible if an overhead per
trace log of 2 or 3 milliseconds was a correct representation of
trace logging in the database layer. A procedure in the simulator
was represented as a consistent SELECT query16, either followed
by a call to the tracing API or not. The exact implementation of
the calling of the tracing API in IFS Applications may not be
accurately represented by this simulation.

Inside stored database procedures, the logging API could be
called asynchronously (similar to how tracing in the middleware
is implemented). This was not possible in the simulation, and
therefore the simulated tracing in the database layer is
synchronous. If database tracing is asynchronous, a result more in
line with scenario 3 (where overhead could not be detected at all)
would not be improbable. This is also consistent with the
procedure chains that both execute their code and call the tracing
API within a single millisecond that have been observed.

8.2 Necessary points of interest
The results of the open card sort proved to be mostly correct. The
database points had some ambiguity associated with them, but
their usefulness in a diagnostics situation proved to be significant
enough to overcome the limitations of the ambiguity. Very rarely
did traces become truly ambiguous or wrong, and some observed
traces (particularly ones with more than 30 database points)
would be very hard to make sense of without the presence of
procedure call chains.

16 The exact statement was “SELECT 'hello world' FROM
DUAL”, thought to execute in close to constant time.

Regarding the middleware points dubbed as possibly redundant,
they proved to have great usefulness for the purposes of
representing and visualizing data. The presence of a known
starting point as well as a known endpoint enabled non-
ambiguous representation of transaction completion.

Therefore, we consider this implementation to largely support the
validity of the open card sort, with the reservation that the
middleware points dubbed possibly redundant are in fact very
useful to the tracing application.

Also, observed traces which did not follow the predefined flow
still generated some kind of trace data that could be analyzed,
which supports that all examined cases were handled by logging
the points of interest suggested by the open card sort but that all
points are not always needed.

8.3 Threats to validity
Aside from the uncertain accuracy of the simulator, discussed
earlier, one of the biggest threats to the validity of the study is
the use of OrientDB Studio during testing and usability
evaluations. The lack of a graphical client to visualize the trace
data in a more appropriate manner caused us to use the database
administration tool that ships with OrientDB, capable of
visualizing graphs on an HTML canvas.

Aside from having a multitude of bugs, the way in which the data
is visualized is quite generalized and not adapted for the purpose
of visualizing application traces. The fact that the usability
turned out to be decent while using such an ill-fitting tool as
OrientDB Studio may indicate that the usability had been even
better with an actual graphical client developed for this purpose.
However, it may also be a sign that the implementation has been
biased towards producing data in a format that can be made
comprehensible in OrientDB Studio. As such, the representation
may be less fitting if an actual client had been used.

Another threat to validity comes from the sheer amount of traces
generated and the fact that only a small subset of these have been
examined during the usability evaluation. Even if no completely
incomprehensible traces have been found, it is still possible that
they exist.

9. CONCLUSIONS
The tracing system mostly performed in a satisfactory way with
regards to both RQ1 and RQ2. There were some unanticipated
problem areas, discovered during usability evaluation. This
means that if this tracing application was to be taken into a
production environment and used for diagnostics, something
would have to be done to alleviate the issues regarding storage in
order for the tracing system to be of any kind of use.

Aside from these problems the system performed well and
exposed some unexpected use-cases for the gathered trace data.
The results indicate that the system has potential if it is refined
and some of the worst problems are addressed.

The answer to RQ1 must be dependent on the purpose of the
tracing. The traces where at least most of the predefined points of
interest are present are the most useful, but even a trace lacking
most of them is possible to follow in some way.

Generally, only one coherent trend could be observed. The kind
of data needed for a trace to be completely accurate is for all
events which can be nested to log both when they begin and
when they end. Since programmatic database procedures cannot
log when they return, any trace involving these is somewhat
ambiguous even if it can still be followed and analyzed.

Observations do however support the notion that the current
implementation allows for all examined cases to produce
coherent trace data.

Furthermore, we consider this implementation to meet the given
performance demands; and that this implementation as such
satisfies the requirements consistent with a valid answer to RQ2.
Also supporting this notion is that the more realistic traces
generated during the simulation, being scenarios 1 and 2, did in
fact meet the requirements. Scenario 4 simulated an unrealistic
case of 10 minimal middleware transactions executing 1000
database procedures each. Nothing like that has been observed
with real trace data.

9.1 Future work
Several areas of future work remain unexplored in the context of
this research. One of the main areas discovered to be of interest
is how to differentiate which transactions are interesting with the
amount of information available in the trace data. This is a main
usability concern, and ways to efficiently sort out traces
generated by background jobs is pivotal to the usability of a
tracing application.

If this sorting is done before persisting trace data to the database,
it would greatly reduce the amount of storage needed and thus
alleviate the problem of the database growing too fast at least to
some degree.

Evaluation of trace representation using a graphical client might
be warranted in order to correct any bias introduced by OrientDB
Studio. The main purpose of this work was to collect the required
data and to represent it in some way. While this representation
most likely works using a graphical client, it may not be an
optimal representation if the visualization tool is implemented
along with it.

10. REFERENCES
1. Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,

Patrick Reynolds, and Athicha Muthitacharoen. 2003.
Performance Debugging for Distributed Systems of Black
Boxes. Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, ACM, 74–89.

2. Animashree Anandkumar, Chatschik Bisdikian, and Dakshi
Agrawal. 2008. Tracking in a Spaghetti Bowl: Monitoring
Transactions Using Footprints. Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, ACM, 133–144.

3. Antonia Bertolino, Antonello Calabrò, Francesca Lonetti, and
Antonino Sabetta. 2011. GLIMPSE: A Generic and Flexible
Monitoring Infrastructure. Proceedings of the 13th European
Workshop on Dependable Computing, ACM, 73–78.

4. Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox,
and Eric Brewer. 2002. Pinpoint: Problem determination in
large, dynamic internet services. Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International
Conference on, IEEE, 595–604.

5. Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. 2007. X-trace: A Pervasive Network
Tracing Framework. Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation ,
USENIX Association, 20–20.

6. Arthur P. Goldberg, Ajei Gopal, Andy Lowry, and Rob Strom.
1991. Restoring Consistent Global States of Distributed
Computations. Proceedings of the 1991 ACM/ONR Workshop
on Parallel and Distributed Debugging, ACM, 144–154.

7. Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger.
1987. Monitoring Distributed Systems. ACM Trans. Comput.
Syst. 5, 2: 121–150.

8. Fluentd Project. Fluentd | Open Source Data Collector.
Retrieved February 29, 2016 from http://www.fluentd.org/

9. Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.
Mogul, Mehul A. Shah, and Amin Vahdat. 2006. Pip:
Detecting the Unexpected in Distributed Systems.
Proceedings of the 3rd Conference on Networked Systems
Design & Implementation - Volume 3, USENIX Association,
9–9.

10. Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, et al.
2011. Diagnosing Performance Changes by Comparing
Request Flows. NSDI.

11. Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows,
et al. 2010. Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google.

12. Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007.
Thrift: Scalable cross-language services implementation.
Facebook White Paper 5, 8.

13. Andreas Textor, Markus Schmid, Jan Schaefer, and Reinhold
Kroeger. 2009. SOA monitoring based on a formal workflow
model with constraints. Proceedings of the 1st international
workshop on Quality of service-oriented software systems,
ACM, 47–54.

14. D. Wybranietz and D. Haban. 1988. Monitoring and
Performance Measuring Distributed Systems During
Operation. Proceedings of the 1988 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, ACM, 197–206.

15. facebookarchive/scribe. GitHub. Retrieved February 29, 2016
from https://github.com/facebookarchive/scribe

16. Welcome to Apache Flume — Apache Flume. Retrieved
February 29, 2016 from https://flume.apache.org/

17. openzipkin/zipkin. GitHub. Retrieved February 29, 2016
from https://github.com/openzipkin/zipkin

Tracing user transactions through a complex, multi-tiered
business application: Appendixes

Björn Kihlström
Institute of Technology, Linkoping University

bjoki902@student.liu.se

Simon Gustafsson
Institute of Technology, Linkoping University

simgu002@student.liu.se

1. COMPONENTS OF THIS PROJECT
The implementation of the tracing system was composed of
multiple parts of varying size and complexity. These are listed
and described below.

1.1 Java components
Most of the work during this project is centered around the Java
components, making up easily 90% of the body of work. The
Java components are:

1.1.1 The OrientDB sink
This component is easily the largest and most complex Java
component. It is responsible for persisting the trace data to
OrientDB and building all logical connections. The final version
is 885 lines of Java source code and it has been rewritten from
scratch twice. During the time when this was worked on, all
other Java components aside from the simulator were completed
in parallel.

1.1.2 The JDBC table source
This component is responsible for periodically consuming the
entire table of database logs and sending them into Apache
Flume as Flume events. It contains a queue where all consumed
events are stored. This is because Flume consumes a single event
at a time and it is undesirable to query the database too often. It
is made up of 266 lines of code. It was implemented in less than
a week.

1.1.3 The JSON line event deserializer
This component is responsible for deserializing JSON events
from a file storing one JSON object per line. This is to allow a
standard Spooling directory source to consume events generated
by the tracer module and deserialize them in a format that makes
sense. It is made up of 109 lines of code in its final version and
has been rewritten from scratch once (prior to that it was larger).
It took three days to implement the first time and another two to
rewrite.

1.1.4 The tracer API module
This component is responsible for exposing an API that produces
files that can be read using a spooling directory source with the
JSON line event deserializer. It is called from within IFS
Applications and contains some JavaDoc strings for clarity and
ease of use. It is made op of around 490 lines of source code and
took around two weeks to fully implement.

1.1.5 The simulator
The simulator is a java program used during the performance
evaluation. The final version is made up of 405 lines of source
code, but code quality was not a concern during implementation.
The last version of the simulator was implemented in less than a
day.

1.2 Trashed components
Some java components were explored and partially implemented
but were abandoned at some point. These did not make it into the
final version of the project.

1.2.1 Support for non-synchronized system clocks
in the OrientDB sink
This was implemented in a non-functioning state in earlier
versions of the sink. Three weeks of work were put into this
before it was abandoned because the amount of available log data
did not allow for such a solution to consistently function. This
was due to the problem of log events arriving asynchronously at
the sink, and the only way to properly sort them was using time
stamps. The support for non-synchronized clocks was based on
the presence of a cache that is not part of the final solution as it
did not work at all with given data.

1.2.2 An alternative source for middleware logs
and associated tracer API module
Writing serialized JSON to disk may not be the most efficient
method to send logs to Flume. A variety of IPC-based solutions
were tried and scrapped because they had unsolvable problems
associated with them. One week was spent on this.

1.2.3 The old simulator
Before the simulator that was actually used was developed, a
simulator generating random trace data was being developed.
Not a lot of time was spent on this, and a few parts of the
solution made it into the final simulator which executed static
scenarios. There was also a non-Java component to the simulator
initially, in the form of an Arch Linux virtual machine that would
have been used to create a controlled lab environment. This
proved unnecessary and added too much difficulty to the
implementation. Under a day was spent on configuring it.

1.3 Other components
A fem other components were part of the project. Building and
configuring Flume to execute on Windows took around 3 days.
Aside from this, a few stored database procedures were written
for demonstration purposes. These are small in code volume and
the time taken to implement them was no major issue.

2. DIVISION OF LABOR
During this thesis work two different ways of dividing labor have
been used at different stages of development. The first is divided
effort based on the natural division of the system and the second
is collaborative effort through pair programming.

2.1 Divided effort
Throughout most of the project there has been a natural division
between different tasks based on how the system has been
structured. The main body of work has been located in both ends
of the system; either where trace logs are generated and
consumed by Flume for transportation or at the central logging
server where trace logs are persisted to OrientDB.

During the phases of the project where such a division of active
tasks was possible, the tasks were split in such a way that they
could be done in parallel. The following procedure describes the
work flow used:

1. First thing in the morning, recap the day before.

2. Do you have a task? If so, do it.

3. Have you completed your task? Claim another if
possible. Inform your partner.

4. Are you unsure about how to proceed? Talk to your
partner.

5. Are you both still unsure about how to proceed? Talk to
IFS.

6. Have you or your partner ran into a difficult problem?
Discuss it on a conceptual level using pen and paper,
maybe use pair-programming to solve it if it is very
important to be on the same page regarding
implementation.

7. Do you need your partner to complete his task before
proceeding? Finish that task using pair-programming.

8. Is there only one general task at hand, or several that
cannot be done in parallel? Use pair-programming.

9. Discuss the state of the system and a strategy for how
to proceed at the end of the day.

Most of the project has followed this procedure.

2.2 Pair-programming and collaborative
effort
When it was impossible or impractical to divide the effort during
a stage of the project, pair-programming or some similar kind of
collaborative effort was chosen as a strategy.

When this was done it was fundamentally due to one or more of
these reasons:

1. It was important to be on the same page (common near
the start of the project, also applies to writing the
report).

2. There were no other tasks at hand (common towards
the end of the project, also applies to writing the
report).

3. The task is complex enough to demand the attention of
both parties (happened sporadically).

4. Waiting for the other party to complete a task would
otherwise force one party to be idle (happened rarely
and mostly near the start of the project).

The application of this technique to the report can not be called
“pair-programming” because it does not involve programming,
but the collaborative effort (as we choose to call it in this case)
was structured in the same way.

2.3 Concrete division of tasks
Divided effort by both participants in different stages of
development where it is hard to separate what has been done by
what person is referred to as “mixed effort” below.

• The OrientDB sink: Programmed during divided labor
completely by Simon. Refactored for stability and style
towards the end using pair-programming.

• The JDBC table source: Programmed during divided
labor completely by Björn.

• The JSON line event deserializer: Programmed during
divided labor completely by Björn.

• The tracer API module: Programmed during divided
labor completely by Björn.

• The trashed non-functioning IPC sources and
associated tracer module: Programmed during divided
labor completely by Björn.

• Stored OrientDB functions: Mixed effort (hard to say
who wrote what).

• Setup of Apache Flume on Windows: Mixed effort with
some collaborative effort in the beginning. Mostly
Simon.

• Setup of simulator, including trashed ideas: Mixed
effort. Mostly Simon on the setup of the Arch Linux
virtual machines that were not used. Mostly Björn on
the random simulator that wasn't used. The final
simulator was developed from small scraps of the
trashed random simulator using pair-programming.

• The report. Fully written together by collaborative
effort. No pieces written individually.

3. WORK FLOW MOTIVATION
The method was chosen mostly based on practicality. Pair-
programming has many advantages, but was mostly unsuitable
for this project. Two of the main advantages of pair-programming
are [2]:

1. The improved quality and readability of the code.

2. The improved overview and understanding of the
system for all parties involved.

The main problem with pair-programming in this project which
caused us not to adopt it as a main method was that the different
components were interdependent. To be able to test one of them
in terms of functionality, a working version of at least one other
component was usually needed.

This (combined with the fact that only two people were working
on the project) made it very impractical to use the method as it
would result in one out of two cases:

1. The entire team implemented a large portion of
functionality without an ability to test it.

2. The entire team would constantly be switching tasks,
making it difficult to wrap their heads around more
complex problems.

The method mainly used instead was the divided labor described
above. When one component was ready for some functionality
tests, the other one would also be ready for the same tests. This
allowed for much quicker iterative testing, which would have
been impossible using pair-programming.

Regarding the overview and understanding of the system, the
interface-based programming paradigm which was enforced by
the framework associated with Apache Flume caused
implementation details from other components to be fairly
unnecessary during the implementation of any one component.
The fact that the interfaces implemented were also specified by
Apache Flume and as such could not be changed during
implementation also made it more relevant to discuss the system
in very general terms.

How to send and receive data was never an issue as the
interfaces already specified that. It was always rather a question
of what data to send and how to format it. This made it more

useful to discuss the system at a much higher level, especially as
the implementation details changed often and without notice.

As such, implementation was left at a component level which
only made it necessary to understand the structure and high-level
functionality of the system during development. Knowing what
the JDBC source does is more relevant than knowing how it does
it when working on the OrientDB sink, for example (the other
way around is also true).

3.1 The agile process during development
Early in the project, development was done without much in-
depth understanding of the functional demands posed by IFS
Applications on the tracing system. As such, the need for agility
was emphasized.

It was not only a matter of understanding the high-level structure
of the system, but also a matter of being able to change it quickly.

No scrum board has been used for task management, because
implementation demands have changed too rapidly. The process
has been in line with very rapid Extreme Programming aside
from the lack of pair-programming in most cases [1]. Functional
demands were very prone to change as problems were discovered
during acceptance tests, and sprints were a single week in length.

As such, most of the time there were only very few active tasks at
any given time, which made actual SCRUM [3] using a board
redundant. Priorities also had a tendency to change between task
completions and sometimes during the course of a single day
between daily standups, which made the use of a board in order
to prioritize several tasks into nothing but unnecessary
administration.

Two daily standups were done every day, one in the morning in
order to recap and one at the end of the day in order to
synchronize priorities and tasks. One meeting with IFS was held
every Monday in order to demonstrate the current state of the
project and to set goals until next meeting. This made sprint
length into 1 week, effectively.

This process made all development into a series of small, low-
risk gambles where losses could be cut short quickly. Iteratively,
the gambles that paid off shaped themselves into a prototype.

3.1.1 Why do it this way?
This rapid development process is consistent with a project of an
experimental nature. Quickly exploring possible solutions in this
way where a losing gamble can be discarded quickly provided
the project with many different explored avenues, as seen in the
discarded parts of the project.

The ability to quickly discard a dysfunctional solution was
intentional as knowledge of the problem and associated demands
was known to be very meager in the beginning of the project.
Flume was given three days to build and run on Windows before
being discarded, and this was close to happening. Had this
happened, the project would have taken a drastically different
turn. In fact, not a single line of code written would have been
the same.

The same applies for every chosen component. Only the ones that
worked and met at least a sizable portion the demands within a
relatively short period of time (measured in days) made it into
the solution. Gradually, the method improved and refined our
understanding of the problem enough to make more informed
decisions. It also limited the number of options available, as
increasingly large portions of the implementation had already
been decided upon. This gradually reduced the risks taken during
the small gambles.

Parallel work during these experimental phases also led to being
able to try more options in the same amount of time. This is due
to the nature of parallel trial and error in different domains. Even
if pair-programming produces better code in less time, the idea of
these gambles was to ditch bad solutions quickly. Improved code
quality in these cases may have upgraded terrible solutions to
just being bad or mediocre (bordering on bad), which in turn is
contradictory to the purpose as it may not have been abandoned
as quickly (or at all) if this was indeed the case.

What made this a fitting method was, in short, that this project
was a completely blank slate in the beginning. And the fact that
many different approaches had to be tried in a short time.

3.2 Use of pair-programming
Pair-programming had a purpose in some situations during the
project. The main portion that would have benefited the most
from pair-programming would have been the OrientDB sink.
This was not the case from the beginning, however, as too little
was known about the system during this time to build a sink that
functioned according to specifications. As such, experiments had
to be undertaken even at the sink side of the implementation.

This caused the sink to be completely rewritten twice. The first
few gambles did not pay off, so the sink was rewritten once early
in the project. The second time, a sound logic had started to take
shape as a result of experimentation and it was known how the
sink could work properly. The problem was that the code was so
convoluted at this stage that the sink would have to be rewritten
again for the emergent sound solution to be readable and of good
quality.

For this purpose, pair-programming was suitable. The second
time the sink was rewritten, quality and readability were
prioritized and the risk of change was significantly lower than
earlier in the project. This was done through pair-programming
to produce the final version of the sink.

3.3 Planning the work flow
Implementing the system in this way was not planned in great
detail from the start, but like the system itself it came into form
through a series of small, pragmatic decisions during the project.
The most important thing from the start, once the open card sort
had been carried out, was to begin implementation. The work
flow formed through the same iterative process that shaped the
system.

Bad work methods were quickly discarded and those that
produced results were retained. This formed the method
described above, reminiscent of Extreme Programming.
Although, the phrase “Extreme Programming” was never used
until the similarities were noted when the project was practically
finished.

The main purpose of the work flow was exploratory; to minimize
the risk of change, failed attempts and wrongful assumptions. To
plan work flow ahead of time was counter-productive with
regards to this purpose.

3.4 About the possibility of test-driven
development
Test-driven development was not even attempted at any stage of
the project. The inherent impossibility of predicting enough
details about what the result of an operation should be made it
very difficult to write any kind of unit-tests ahead of time.

The other major problem with unit-testing was the fact that the
implemented parts of the system did not do much at all on their
own but required the rest of the system to be present in order to
do anything at all. The OrientDB sink could not be tested, aside

from some minor implementation details, outside of Flume. The
same is true for most other components in one way or another.
The fact that almost all parts of the interface do not return
anything also did not help in this respect.

This exposes several limitations with regards to unit-testing. The
contract is very small and the desired result is only consistent
based on earlier events. Testing the implementation goes against
the paradigm of interface-based programming. This, combined
with the uncertainty regarding any made assumptions about
correct behavior made test-driven development impossible or at
least very hard in the context of this project.

Another aspect that made the test-driven development paradigm
undesirable in this case was the fact that the project was
exploratory in nature. As many aspects as possible should be
covered in an exploratory project, and one of the main purposes
is to discover emergent problems and approaches during
development. Test-driven development does not further this
purpose.

All in all, tests performed by manual examination of generated
traces proved more in line with the purposes and limitations of
the project.

4. WORK FLOW EVALUATION
Generally, the work flow has been satisfactory with regards to the
purposes of the project. The purposes, however, are key to the
efficiency of a work flow that works as described. This work flow
would not be fitting for all kinds of projects, or even most kinds.

4.1 When it works
Generally, the projects where the properties coincide in a very
specific way are the only ones that would benefit greatly from
this kind of work flow. This project fit all the criteria, and as
such it was appropriate in this case. Most projects would not
meet these criteria.

4.1.1 Small team
The first prerequisite for the work flow to be sound for a project
is for the team to be very small, as in two or three people. Larger
teams would find more benefit in using pair-programming to
greater extent. The main benefit of not using pair-programming
very much during this project was the possibility of rapid
integration. With a larger team, this could be achieved anyway. In
a larger team, gaining an overview and synchronizing work at a
higher level would also have been much harder if everybody
worked individually.

4.1.2 Short project with short sprints
As the project was short, there was only a limited amount of
parts to implement. This kept the project from ever becoming too
difficult for any one person to grasp at a higher level. For a

longer project, this would become much harder and require a
different work flow, for example a more formal agile method
using a SCRUM board. Short projects also diminish the
availability of time that can be used for proper planning and
forces rapid development.

4.1.3 Low level of previous knowledge
If a known solution to the problem can be easily implemented by
the team based on familiarity with the subject, most of the
advantages with this work flow would be lost as the need for
blind experimentation diminishes drastically.

4.1.4 Blank slate project
A prerequisite for this work flow to be useful is for very few
parts of the solution to be finished or even decided upon. This
makes for a situation where many different possible approaches
present themselves to the team. Thus the need to be able to
change approach quickly when these approaches do not perform
according to expectations upon further investigation.

4.2 Conclusions drawn
There is a kind of project that fits the above description, and that
is a low-resource, short-term, exploratory prototype
implementation done for the purposes of trying something out
without investing too much into it. Putting one or two people on
a short exploratory project is not unheard of. In these cases,
where the purpose is purely exploratory, this work flow is very
fitting.

The exploratory nature of such a project demands that as many
different angles as possible are explored. Administration can be
kept to a bare minimum during these projects as all time spent on
administrative tasks is time that is not spent exploring and trying
things out.

For any other type of project, this method should be more formal
and administered in order to ensure correctness and quality as
well.

5. REFERENCES
1. Kent Beck. 1999. Embracing change with extreme

programming. Computer 32, 10: 70–77.

2. Frank Padberg and Matthias M. Müller. 2003. Analyzing the
cost and benefit of pair programming. Software Metrics
Symposium, 2003. Proceedings. Ninth International , IEEE,
166–177.

3. Ken Schwaber. 1997. Scrum development process. In
Business Object Design and Implementation. Springer, 117–
134.

