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ABSTRACT
This paper details the design and implementation of a software
tracing application, used to trace transactions across the different
layers  and  parts  of  a  distributed  enterprise  system called  IFS
Applications.  The  tracing  system  is  evaluated  based  on
performance  and  usability  in  order  to  define  some  general
concepts  regarding  how  to  trace  flow  through  a  complex
enterprise  system composed of many different  components  and
layers.  The  implemented  system  showed  great  potential  in
accomplishing the goal of adding next to no overhead, but was
lacking in that it could not scale to support many clients over any
amount of time because of the amount of data generated.
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1. INTRODUCTION
The development and design of complex business applications is
a  long  process  during  the  entire  life-cycle  of  the  application.
When large amounts of business-critical data and functionality is
handled by the application in a multitude of services divided into
several  layers  of  functionality,  it  becomes  increasingly
challenging to  diagnose a  performance issue  associated  with  a
particular transaction1.

This is especially true when the application setup varies across
different  installations2 of  the  software.  Technical  support  staff
face a challenge in determining which route a certain transaction
takes through the system. A customer's complaint of the system
being slow and non-responsive under certain conditions can lead
to a lot of time being spent on diagnosing where in the system
the problem resides.

Several  existing  monitoring  tools  are  in  place  to  monitor  the
general state3 of the system. This generates an immense amount
of data for any particular installation, and correlating these data
with  a  particular  issue  is  not  a  trivial  task.  A transaction  in  a
distributed environment is not a simple entity that travels  from
point A to point B in a deterministic way. Rather, it travels along
a complicated path from the client  through the system towards
the  database  through  several  nodes  and  is  subjected  to  load-
balancing  functionality  as  well  as  traffic  through  third-party
modules  with unknown internal  implementation specifics along
the way before it travels back to the client with a response. 

1 By “transaction”,  we mean a call  from a client to the system
and all associated network traffic and code execution inside the
system up to and including the response to the client.

2 By “installation”  we refer  to  an actual  existing  setup  of the
system in a production environment.

3 By  “state”,  we  refer  to  all  factors  that  may  affect  the
performance  of  a  particular  node,  including  things  such  as
network load and hardware state.

Therefore,  it  is necessary to be able to trace such a transaction
through the system to be able  to correlate  the  already existing
information  about  system  state  with  a  particular  performance
issue.  Which  node  in  the  system  it  is  that  actually  stalls  the
performance is a key piece of information. This complements the
information already obtained by monitoring tools already in place
and  makes  the  information  these  provide  more  useful  by
narrowing the  scope  to  the  node  where  the  performance  issue
arises. 

The  problem  of  monitoring  complex  business  applications
distributed across several machines is a challenge in itself. It is
also not new. Joyce et  al.  [7] studied the problem in 1987 and
identified several problem areas that still hold as a main focus of
work in the area today. The difficulty of reproducing a given error
that results  from a possible but improbable execution path was
already outlined in their work. 

Around the same time, Wybranietz et al. [14] developed a system
monitoring application for distributed  systems and  managed to
outline several practical problem-areas for such implementations.
A solution to the inherent non-determinism and the resulting non-
reproducibility of a transaction was implemented as a real-time
surveillance of the system. The paper also outlined the need to
minimize  the  performance  hit  resulting  from  such  an
implementation  and  laid  down  some  ground-work  for  the
principles that govern implementation of such monitoring.

The  problem  of  the  non-reproducibility  of  the  state  of  a
distributed system is not new and has been studied since at least
the  early 90's  [6].  Many different  monitoring  tools  have  been
developed since then (such as  GLIMPSE [3]) and the issue is
still a subject of research.

1.1 Objective
In this  work we implement  and evaluate  a solution for tracing
specific transactions through a distributed business  application.
The  data  gathered  by  this  implementation  complements  data
from  other,  already  existing  monitoring  tools  and  should  be
independent  of these  tools  as  their  exact  nature  varies  across
installations. We are concerned with discerning where a problem
occurs so that  other  monitoring tools can be used to figure out
why. The system must be able to perform a trace in real time (or
as close to real time as possible) as well as after the transaction
is completed or has failed.

A challenge  associated  with  such  an  implementation  in  a
business environment is that no significant further overhead may
be introduced by such a monitoring service. Apart from that, the
implementation of the service must be done in such a way that no
security  issues  that  were  not  already  present  in  the  original
business application may be introduced.

1.2 Research questions
Through the implementation of the tracing system in the given
context, we aim to examine the following questions:



1. What  kind  of data  needs  to  be  collected  in  order  to
trace  a  transaction  through  a  distributed  business
application;  and  to  do  so  with  sufficient  detail  and
accuracy to  be  able  to  identify points  of interest  for
diagnosing a performance issue?

2. Given that the answer to the first question is known, is
it  possible  to  collect  the  required  amount  of  data
without  introducing  significant  further  performance
degradation?

1.3 Context and limitations
To answer these questions, a tracing system as described above is
implemented in the context of an already existing, large business
application. The chosen application for the purposes of this study
is  developed  by IFS4,  a  developer  of  enterprise  systems.  The
application is called IFS Applications5, being their core product.
The application is already monitored by a number of other tools,
making its state known at any given time.

The tracing system implemented follows a transaction originating
from the  graphical  client  called  IFS Enterprise  Explorer  as  it
makes its way through different parts of the system. It is limited
to transactions originating from this client and it is also limited
to modules that are developed by IFS and which are part of IFS
Applications.  Transactions  originating  from  other  clients  or
which take paths  through third-party modules connected to IFS
Applications are not taken into consideration.

Whatever  overhead is introduced by other  tools in place is  not
the focus of the study. How the data is to be correlated with the
output  of these  other  tools  is  also  not  the  focus of the  study:
Rather,  the  focus is  enabling the  possibility of correlation.  No
attempt at automatically correlating the data is within the scope
of  this  study.  Rather,  this  has  to  be  done  manually,  and  the
purpose of our implementation is only to provide useful data in
order  to  be  able  to  pinpoint  the  location  of  the  failure  or
performance bottleneck.

Network  propagation  delays,  caused  by congested  networks  or
physical distance, is known to be a possible cause for transaction
latency in existing installations and can as such not be ignored.
Our  implementation  has  to  function  even  when  a  network  is
congested or if different parts of the system are located at a great
physical distance from one another.

The nature of the data processed by IFS Applications and the fact
that  access-control  policies  may  need  to  be  enforced  on  the
gathered  information  makes  it  a  priority to not keep  restricted
information on a  central  logging server  unless  it  is  guaranteed
that it can enforce the same, or more restrictive, access policies
as the actual  node.  This  introduces the need to make sensitive
data  more  anonymous,  so  that  business-critical  details  do  not
leak into the trace.

2. THEORY
Due  to  the  fact  that  the  problem  area  is  well  known  among
developers  of distributed  systems,  many different  takes  on the
problem have been proposed and implemented  in  the past.  We
aim to take this into account when carrying out our study on the
subject.  Large  commercial  actors  have  developed  general
solutions  for  carrying  out  software  monitoring,  and  academic
studies have evaluated alternative design patterns. 

4 See http://ifsworld.com for more information.
5 See  http://www.ifsworld.com/en/solutions/ifs-applications/ for

more information.

A paper  by Sambasivan  et  al.  [10]  compares  several  existing
implementations  (both  those  that  are  developed  as  research
projects  and  purely  industrial  applications)  and  different
algorithms for establishing transaction paths through systems. It
also  outlines  specific  use-cases  for  certain  approaches.  These
observations  are  useful  when considering what  is  a reasonable
approach in our case. 

2.1 Technical background
Many  different  tools  exist  to  carry  out  the  general  task  of
collecting  monitoring  data  in  a  single  location,  which  is
necessary  for  software  tracing.  Facebook  once  developed  a
framework  called  Scribe,  which  has  since  been  discontinued
from active development [15]. Scribe aimed to collect all log data
from a distributed  system in a single  location,  adding minimal
amounts of overhead. The source code is now available under a
FOSS6 license, but is not maintained.

Apache Flume [16] is another FOSS implementation that aims to
solve  the  same  problem  which  is  still  actively developed  and
maintained.  It  is  able  to  collect  all  logs in  one  place  through
minimal  overhead.  It  is,  however,  not  a  complete  monitoring
application as much as it is a framework that can be used to build
one. It is written in Java and exposes a Java API.

A third FOSS alternative is Fluentd [8]. It is largely written in C
(with some Ruby parts) and aims to log everything it receives in
JSON format. It is designed to be usable as a base for a logging
layer  in  a  distributed  system.  Fluentd  does  not  support  the
Windows  platform,  which  is  a  major  problem  because  of  the
context of this  study. Therefore,  it  is  not an alternative to base
our implementation on Fluentd.

An application that very closely mimics the behavior we want to
accomplish is Zipkin, employed by Twitter [17]. It gathers traces
from a distributed application and displays them via a web-based
UI. It is more of a complete solution than one that can easily be
customized according to individual needs.

2.2 Related work
An academic evaluation of a tracing system similar to what we
set  out  to accomplish  is  the  implementation  and  evaluation  of
Pinpoint [4]. Pinpoint was aimed at tracing transactions through
a  distributed  system  and  correlating  the  traces  and  request
information with error occurrences in order to establish patterns
for what transactions are more likely to fail and in which nodes
this  happens.  However,  one  of  the  assumptions  made  in  the
development of Pinpoint was that transactions fail irrespective of
other  transactions  as  a  result  of  their  own  intrinsic
characteristics. We do not make this assumption in our work, as
IFS reports  that  very few of the performance issues  associated
with their application are caused by bugs. Rather,  we make the
assumption  that  a  transaction  fails  as  a  result  of the  system's
state. 

In some ways, a paper  by Aguilera  et al.  [1] falls  more in line
with  our  take  on  the  subject.  The  purpose  of  their  proposed
implementation  was  not  to  automatically  correlate  a  given
transaction  with  the  cause  of  failure.  Since  the  nature  of  the
nodes  in  question  could not  be  known in  the  context  of their
work, the ambition was only to provide the path of ill-performing
transactions and the context  in  which they performed badly in
order to aid manual analysis. On the other hand, Aguilera et al.
did not propose a solution for real-time tracing, instead relying
on  analysis  after  the  fact.  The  work  is  also  based  on  the

6 Acronym  for  “Free  and  Open  Source  Software”.  See
https://opensource.org/licenses for more information.

https://opensource.org/licenses
http://www.ifsworld.com/en/solutions/ifs-applications/
http://ifsworld.com/


assumption that all parts of the service to be analyzed are part of
a local network and that network propagation delays did not have
to be taken into account.

Another  attempt  to  determine  the  cause  of  failure  in  ill-
performing  transactions  is  Pip  [9].  This  implementation  is
different from ours in that it  takes the approach of first  having
the developers and maintainers specify the expected behavior of
the system and then look for transactions that do not correspond
to this behavior. Since expected behavior may be very difficult to
determine in the context of our study, we consider this approach
out of scope. Other similar takes on the subject exist, such as the
approach proposed by Textor et al. [13]. They are different from
what we aim to implement for the same reasons as Pip.

A paper  by Animashree  et  al.  [2] describes  the  feasibility and
algorithmic complexity of a tracing system which is based on the
footprints  generated  in  local  log files.  The  analysis  of such  a
tracing system presented in their  work supports the notion that
our  take  on the  issue  is  possible,  as  the  context  of our  work
includes a system that does not correspond to the proposed worst
case  scenario  presented.  However,  Animashree  et  al.  did  not
implement such a system.

An actual implementation that is superficially similar to what we
aim to implement is X-Trace [5]. Many concerns that have to be
taken  into  account  during  our  work  were  discussed  when
implementing X-Trace, such as maintaining the security policies
of  the  application.  However,  this  is  a  very  generalized
implementation  that  is  meant  to  operate  by  attaching  extra
metadata to all  network requests,  which can not be done in the
context of our work.

A work that is often referred to in an industrial context is a paper
published by Google detailing the implementation and design of
Dapper  [11].  In this  document,  main  design  concerns  are  laid
down and  many other  applications  (for  example,  Zipkin  [17])
boast that they are compliant with these design principles.

2.3 Theoretical implications
One  thing  all  software  tracing  tools  have  in  common  is  the
presence of central logging by sending logs over the network. A
key focus in our study is performance, and the most expensive
operation  in  this  respect  is  a  network  transfer.  Therefore,  it
becomes natural for our study to minimize the amount of network
transfers.

There  are  a  few  possible  takes  on  this  subject.  A common
solution  is  to  send  several  entries  at  once  in  batch  network
transfers, perhaps even delaying the sending of logs in conditions
of  high  network  load.  This  approach  is  pivotal  to  reducing
network load.

3. METHOD
The  method  is  divided  into  four  parts,  each  detailed  in  this
section.  The  first  part  is  a  feasibility  study  where  IFS
Applications  is  examined  and  important  points  of interest 7 for
generating  a  comprehensive  trace  are  identified.  Further,  the
identified  points  are  categorized  and  the  possibility  of  local
logging is evaluated for each category along  with the necessity
and usefulness associated with logging the point at all.

The  second  step  is  the  implementation  of  a  prototype
corresponding to the conclusions drawn in the feasibility study.
The implementation consists of the tracing application itself and
a  simulated  system  that  mimics  the  behavior  of a  distributed

7 A point of interest is defined as a system event that potentially
can be used to identify a performance issue in the system.

business application that can run on virtual machines to allow for
easy testing in a controlled environment.

The  third  step  is  a  performance  evaluation.  The  simulator  is
subjected to a series of stress-tests both when tracing is enabled
and when it is disabled. This allows for accurate measurement of
the imposed overhead in a controlled environment.

The  fourth  step  is  evaluating  the  usefulness  of  the  produced
traces. This is done by attaching the tracing system to a sandbox
installation  of IFS Applications  and  making  observations  from
the gathered trace data.

3.1 Feasibility study
The  feasibility  study  is  conducted  along  with  IFS  staff  by
reviewing  the  system  and  identifying  points  of  interest.  Each
point of interest  is written down on a card along with a general
description of the event. The purpose of this is to provide a basis
which  can  be  used  to  answer  RQ1.  Points  of  interest  are
candidates for logging and can be used to identify the amount of
data that needs to be collected to produce a comprehensive trace.

The second part  of this  step is to use this information to guide
the  strategy for  the  implementation.  To do this,  the  cards  are
categorized  by  any  emergent  properties  which  they  have  in
common, a process called open card sorting8. Once the points of
interest  have been categorized,  which ones are good candidates
for logging can be evaluated.

When examining a point of interest, it becomes necessary to have
a certain set  of criteria  for defining which are to be taken into
account.  A first  criteria  to  qualify  as  a  point  of  interest  is
generality, here  defined as a point traversed by all  transactions
regardless of the implementation of the business logic. Potential
points  where  the  only way to produce trace  logs would  be  to
manually hard-code the  logging calls  inside  business  logic are
immediately discarded and does not make it past system review.

Evaluation  of  the  usefulness  of  any  categories  of  points  of
interest for a trace is done based mainly on two further criteria.
The  first  of  these  is  redundancy.  Redundant  information  is
defined as information that can be inferred from other points of
interest.  This  makes  the  point  irrelevant  to  the  trace  and  thus
non-useful.

The second criteria is ambiguity. Non-ambiguous information is
defined as information that can only produce a single trace where
all  continuous steps  taken can be inferred,  whereas  ambiguous
information can either  produce several  traces,  or a single trace
that can not be used to determine the series of events accurately.

Redundant  information is considered a more relevant  reason to
exclude a point from the solution than ambiguous information (as
long as it is not also redundant), because ambiguous information
could still be useful if interpreted manually by someone with an
understanding of how the system works.

3.2 Implementation
In  this  part,  the  system  prototype  is  implemented  as  two
components. The first component is a simulator  made to behave
in a way similar to an installation of IFS Applications. The actual
simulator is made up of nothing but logging events, sleep calls,
and  communication  over  the  network  (with  the  possibility  of
disabling  the  logging  events).  The  simulator  must  be  able  to
simulate different scenarios.

The  second  component  is  the  tracing  service  itself.  It  is
connected to the simulator and receives the logs which are used
to create traces. The development of this service is based on the

8 Cards are sorted by the authors based on perceived similarities.



conclusions drawn in the feasibility study and are refined during
development as part of an agile process in coordination with IFS.

3.3 Performance evaluation
The third step is evaluating the prototype with respect to RQ2. In
the context  of the simulated  system,  it  is  possible  to draw the
conclusion that the difference in execution time of a simulation
with  tracing  enabled  compared  to  the  same  simulation  with
tracing  disabled  is  exactly  equal  to  the  performance  overhead
introduced by the tracing service.

In order to evaluate if the implementation meets the performance
requirements,  several  simulations  are  executed  both  with  and
without tracing enabled. The execution times of the simulations
are  then compared.  Each scenario is  executed  several  times in
order to produce an average execution time.   The difference in
average  execution  time  is  then  used  to  answer  if  a  solution
providing an answer to RQ2 has been implemented. The solution
is  considered  to  fit  the  requirements  if  a  realistic  simulation
scenario  performs  at  1  millisecond  per  log  event  or  better.  1
millisecond is chosen because it is the smallest unit of time that
can  be  measured  using  the  system  clock  of  a  Windows  7
computer.

3.4 Usability evaluation
The usability evaluation is aimed at finding support for the fact
that RQ1 was answered correctly and ascertain that there are no
serious performance issues in a real production environment that
were not discovered during the simulation. This step is based on
ascertaining  that  the  tracing  system  can  in  fact  produce  the
desired  information  when attached to the  real  application,  and
that this information is structured in such a way that it is actually
possible to use the system for its intended purpose.

This  step  is  based  on  general  observations  and  an  open
categorization  of  problems  discovered,  outlining  problematic
areas that need to be addressed before deploying this application
in any kind of production environment. These tests are done by
collecting data from IFS Applications and attempting to examine
and filter traces in a way consistent with common use-cases. Any
problems  that  occur  during  the  use  of  the  tracing  system  are
noted. Results are displayed in the form of general observations.

4. FEASIBILITY STUDY
The feasibility study was conducted during a period of one week
in cooperation with IFS staff. The general structure of the system
was  studied  in  order  to identify points  of interest  which were
then  categorized  and  evaluated.  The  results  of  the  feasibility
study is  divided  into several  sections,  each corresponding to a
component of the study.

4.1 System review results

All  transactions  follow  a  certain  path  through  the  system
components  that  can  be  seen  as  common ground  between  all
transactions.  This  generalized  path  was  examined  in  order  to

identify points of interest. Figure 1 illustrates an overview of the
system design.

Every  transaction  is  sent  from  the  client  to  a  server  which
presents  an  interface  to  the  client  (henceforth  called  a
“presentation  server”).  The  presentation  server  is  largely
disconnected from the rest of the system and contains no points
of interest which are realistic to include in the trace. Any attempt
to  do so would  require  hard-coding the  logging calls  into  the
presentation logic, which excludes them immediately.

The presentation server, in turn, sends the request forward to a
server  handling  business  logic  (henceforth  called  “middleware
server”). This server is part of IFS Applications and has a well-
defined internal  structure.  Every transaction targets  a subset  of
functionality defined as an activity, which contains a number of
methods.  Methods  can  then  invoke  other  methods  or  send  a
request  to  a  server  running  a  database  (henceforth  called  a
“database  server”).  There  are  some realistic  points  of interest
here.

1. The arrival of a request to the middleware server from
the presentation server.

2. Before  invocation  of  a  specific  method  inside  an
activity.

3. After a method inside an activity returns.

4. Before  a  method  makes  a  request  to  the  database
server.

5. After a request to the database server returns.

6. Before a reply is  sent  to the presentation server after
the request is completed.

Regarding the database  server,  some requests  sent  here  do not
lead to the execution of much code, but rather a database query
which  returns  immediately  upon  completion.  In  other  cases,
programmatic database procedures are invoked for more complex
tasks. These present one possible point of interest.

7. When a programmatic procedure is invoked.

Unfortunately, there is no way of knowing when such a procedure
has returned aside from logging manually in each programmatic
procedure  as  soon as  any further  calls  return.  Otherwise,  this
would also have been a point of interest.

Figure 1: General overview of the system. Every server in
this figure could represent several servers subjected to load

balancing.

Figure 2: Flowchart illustrating the flow of a standard
transaction through the system with the points of interest

included.



Two additional points of interest lie in the client software, where
logging is possible.

8. Before sending a request to the presentation server.

9. After receiving a response from the presentation server.

Aside from this, no further points of interest that fit our criteria
could be identified during the review. Figure 2 illustrates how a
transaction moves through the system and where the identified
points of interest occur.

4.2 Open card sort results
The system review yielded 9 points of interest. One natural first
step in the sorting process was deemed to be a division based on
where in the system the point  of interest  resided.  As such,  the
first three emergent categories were the following:

• Client points, containing the points 8 and 9.

• Middleware points, containing points 1 through 6.

• Database points, containing only point 7.

Regarding the middleware points, two stood out as different from
the rest. Points 2 through 5 could happen any number of times in
a transaction depending on what actions are taken by the invoked
method.  Points  1  and  6  happen  only  exactly  once  during  a
successful transaction. Point 1 always happens first  and point 6
always happens last. As such, they are the only points of interest
within  this  category  which  occupy  completely  deterministic
locations in any generated trace.

Furthermore, point 1 is always followed by a method invocation,
causing  point  2  to  be  triggered.  Similarly,  point  6  is  always
preceded  by a  return  from a  method,  triggering  point  3.  This
makes points 1 and 6 stand out as possibly more redundant for
tracing purposes than the other middleware points. Therefore, the
final result of the open card sort is as follows:

• Client points, containing points 8 and 9.

• Middleware points, containing points 2 through 5.

• Middleware  points  (possibly  redundant),  containing
points 1 and 6.

• Database points, containing only point 7.

4.3 Implications for implementation
Regarding the client  points,  both happen exactly once during a
successful transaction. They also occupy completely deterministic
positions  in  any trace (8 always being first  in  the trace and 9
always  being  last).  This  makes  for  a  certain  amount  of
redundancy as their position can always be inferred. In the cases
where this  redundancy does not present  itself,  such as when a
transaction fails before it reaches the middleware server or after
it  returns  to the  presentation  server,  the  information is  instead
ambiguous. 

Because the presentation server cannot support tracing, any error
between the client and the middleware server would result in one
of two possible traces (either the request never reaches point 1 or
it never reaches point 9 after it has logged point 6). From any of
these traces, it can not be determined where the point of failure
resides. 

A time stamp from the client may be useful to the trace in some
cases, but this information is also ambiguous because the clock
on the client may or may not be synchronized with anything else
in the system.  In addition,  the client  is  disconnected from IFS
Applications  even  more  so  than  the  presentation  server;  the
request  may even travel  through the world wide web and thus
making any diagnosis of delays incurred impossible. Because of

all  this,  our results  indicate that client-side logging will  not be
implemented for the sake of the study.

Regarding the middleware points,  the first middleware category
produces  non-redundant  and  non-ambiguous  information  about
non-deterministic execution paths.  According to our criteria this
makes these points essential for tracing a transaction through the
middleware server.

The possibly redundant  middleware points  produce information
that  can  possibly  be  inferred  by  the  points  of  the  previous
category. All transactions trigger point 2 directly after point 1 in
the trace and also trigger point 3 right before point 6. As such,
points  1 and 6 may be redundant,  depending on the amount of
information available at this  stage compared to points 2 and 3.
The redundancy also depends  on the amount  of pre-processing
done between point 1 and the first occurrence of point 2 as well
as  the  amount  of  post-processing  done  between  the  last
occurrence of point  3 and point 6.  Since these are done on the
same server  the  time  stamps  of the points  can be expected  to
provide useful information about any such processing.

The  amount  of traffic  that  could be  saved  by not  logging this
information  is  also  questionable  since  the  other  middleware
points happen more often, particularly if the sending of trace logs
is  performed using batch  operations.  With  this  motivation,  the
logging of these events is implemented for evaluation in the test
environment.

The  only  point  in  the  last  category,  point  7,  happens  with
requests  to  the  database  server  which  cause  the  execution  of
programmatic procedures. When it does happen it produces non-
redundant  but  somewhat  ambiguous  trace  information.  The
reason  for  this  is  that  it  is  impossible  to  trace  when  such  a
procedure returns.

Point  7  may  although  be  useful  anyway as  it  contains  non-
redundant  information.  Access  to  and  understanding  of  the
procedure source code also greatly alleviates this ambiguity. For
this  reason it  is implemented in order to evaluate it  during the
performance and usability evaluations.

5. IMPLEMENTATION
The chosen approach, consistent with the functional demands, is
to  base  the  implementation  on Apache Flume  [16],  mentioned
earlier, to move the logs as quickly and efficiently as possible to
a  log server  where  the  logs  are  stored  in  a  NoSQL database
called OrientDB9. 

An API for generating traces to be consumed by Flume was also
developed to be used from within the monitored application. The
main components of the system are, however, Apache Flume and
OrientDB (via  the  custom sink).  All  custom components  aside
from stored functions in OrientDB are written in Java.

Aside  from this,  a  simulator  was  developed  to use  the  API in
order  to  generate  static  traces  for  the  purpose  of  measuring
performance. This was also written in Java.

5.1 Apache Flume
Apache Flume is a framework designed to move large amounts of
log data as efficiently as possible. Its primary purpose is to move
logs to Apache HDFS which is part of a project called Hadoop10

but it is designed with the inherent possibility of being extended
and  used  for  other  purposes.  It  has  the  inherent  advantage  of
providing  reliability  even  in  conditions  of  high  network  load,
which  solves  one  of  the  key  issues  associated  with  the

9 See http://orientdb.com/orientdb/ for more information.
10 See http://hadoop.apache.org/ for more information.
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implementation.  In  such  conditions,  trace  logs  are  sent  at  a
slower rate but are guaranteed to ultimately arrive at the central
logging server.

The  ability  to  transfer  large  amounts  of log data  using Flume
narrowed the scope of the project to the endpoints of a series of
chained  Flume  processes  running  on  different  hosts.  A Flume
process is called an agent and is made up of several components.
Each  component  is  an  implementation  of a  well-defined  Java
interface.  The most  important  ones are the source,  the channel
and  the  sink.  An  agent  consists  of  one  or  more  of  each
component.

The source is an implementation of a way to consume log data
from an application. A channel is an implementation of a buffer
where events are queued between being consumed by the source
and being sent  to the  sink.  A sink is  an implementation of an
endpoint  where  events  are  sent  after  being buffered.  The  sink
may be  some form of storage  or  be  chained  to  the  source  of
another Flume agent. Figure 3 illustrates the structure of a Flume
agent.

The  implementation  of  the  tracing  system  consists  of  three
custom Flume components. One custom source which consumes
logs from an Oracle database table, one custom event deserializer
(which  is  an  interface  used  by  a  standard  source)  which
deserializes  events  from a  JSON format  and  one  custom sink
which persists the traces to an OrientDB database.

5.2 OrientDB

OrientDB  is  a  NoSQL database  which  is  a  hybrid  between  a
graph  database  (like  Neo4J11)  and  a  document  database  (like
MongoDB12). The trace logs and any collected statistics gathered
from the tracing system follows the pattern of being mostly semi-
structured  data  with  many relations.  Since OrientDB combines
the schema-less nature of a document database with the support
for graph database relations that  are traversed  in constant  time

11 See http://neo4j.com/ for more information.
12 See https://www.mongodb.com/ for more information.

without the use of costly JOIN-operations, it was deemed a good
fit for representing trace information.

The  custom  Flume  sink  implemented  as  part  of  the  tracing
system  communicates  with  OrientDB  and  is  responsible  for
constructing comprehensive traces natively in the database. As an
event arrives to the sink, it is first examined to determine which
point  of interest  it  is  associated with.  This  information is  then
used to correlate the event with any sequence already constructed
for a certain transaction. An event is stored as an entry, known as
a  “vertex”  in  OrientDB,  and  correlation  is  done  by  creating
relations between these vertices, called “edges” in OrientDB.

Edges  have a  name and  are  directional  in  the  sense  that  they
store  a  direction  as  part  of their  logic.  They can,  however,  be
traversed  in  either  direction.  These  relations  are  used  to
efficiently traverse a trace and correlate it with other associated
information.  The  transaction  itself  is  associated  with  a  vertex,
and all  events,  called “hops” in this implementation contain an
edge  pointing  to  such  a  transaction  vertex.  Each  hop  is  also
connected  to  the  next  hop  in  the  transaction.  Furthermore,  a
transaction  has  an  edge  pointing  to  the  first  hop in  the  trace.
Hops contain properties  specifying the point of interest,  a time
stamp and sometimes additional information. 

Hops corresponding to a  point  of interest  which is  a  return  of
something else (a method return, a database return or a return to
the presentation server)  also have an edge pointing to the  hop
corresponding  to  the  associated  initialization  (a  method
invocation,  a  database  call  or  a  received  request  from  the
presentation  server).  These  build  a  logical  structure  that
separates  code  executed  in  different  stack  depths  and  layers.
Figure 4 illustrates how a transaction is stored in the database.

Other vertex types exist for utility reasons. A transaction vertex is
pointed to by one or more user vertices involved, enabling sorting
transactions by user.  Hops also have edges pointing to vertices
describing known parts of the system, enabling sorting hops and
transactions based on the methods involved, the server executing
the method and other unifying properties. The purpose of this is
to be able to follow a trace along the path it  takes through the
system at a topological level and to also be able to visualize the
path on this level.

A bonus feature achieved from these additional vertices created
to  enable  easy  diagnosis  of  ill-performing  transactions  is
indirectly constructing an entire topological map of the monitored
system as it is used. It is possible that this enables other uses of
the tracing system, but evaluating those uses is not the focus of
the study. They are touched upon later in this paper, but not in-
depth.

The most  practical  way to navigate  through the  data  stored  in
OrientDB, using OrientDB Studio13, is to write stored functions.
Functions  like  this  have  been  written  during  development  in
order  to  efficiently  retrieve  desired  information,  such  as
unfinished transactions or unusually slow execution times. There
are three different languages available for native functions in the
database  (SQL,  JavaScript  and  Groovy),  but  most  of  the
functions  in  this  implementation  are  written  in  JavaScript.
However,  these  would  not  be  used  if  a  graphical  client
application existed.

13 OrientDB  Studio  is  a  web-based  graphical  database
administration tool with a visualizer that can be used to view
OrientDB  graphs.  Since  no  graphical  user  interface  was
developed for the sake of this study, OrientDB Studio was used
to visualize the generated trace data.

Figure 3: Simplified illustration of a Flume agent and its
components.

Figure 4: Simplified illustration of the way a trace is stored
in the database.

https://www.mongodb.com/
http://neo4j.com/


5.3 The simulator
The  simulator  used  during  performance  evaluation  is
implemented  as  a middleware  simulator.  Because  no points  of
interest exist on the client or presentation server, these can easily
be  ignored  for  overhead  measurements.  The  middleware
simulator therefore acts as if one or more clients  were making
requests  to  it  via  a  presentation  server,  but  in  reality  the
simulator starts transactions on its own.

The simulator is a simple Java program that accepts instructions
in  the  form  of  command  line  arguments.  These  are  used  to
determine whether or not tracing should be enabled,  how many
transactions should be executed as well  as how many points of
interest of which type to simulate during a transaction.

The  simulator  uses  busy waits  in  order  to simulate  processing
rather than sleep calls, as a sleep call would cause the  running
thread  to  become  idle  which  is  inconsistent  with  the  way
processing is done in a real  environment.  This way, measuring
overhead becomes more realistic as Flume has to compete with
other processing when consuming trace data.

The simulator uses the Java tracing API to produce trace logs, in
the  same way as  IFS Applications.  The  Flume agent  is  set  up
using  a  spooling  directory  source  (a  standard  Flume  source
reading files in creation order from a specified directory) with a
custom deserializer, parsing one JSON object into a Flume event
per  line.  A memory channel  (a  standard  Flume channel  which
buffers events in memory) is used for buffering. The sink on the
simulator is forwarding the events to another Flume agent using
a  Thrift  sink  (a  standard  Flume  sink  sending  events  over  the
network using the Thrift [12] RPC protocol to be consumed by a
corresponding standard  Thrift  source).  The simulator runs on a
Windows 7 laptop.

The  simulator  also  uses  Oracle's  JDBC14 driver  to  simulate
database  requests.  The  database  procedures  executed  simply
insert log events into a table on the database server. The database
server resides  in a virtual  machine cluster  provided by IFS and
provides  an Oracle  Database15 This  server  runs a Flume agent
which uses  a  custom source to consume events  from the  table
using  the  same JDBC driver.  In all  other  ways except  for  the
source,  it  is  set  up  the  same  way as  the  Flume  agent  on the
middleware simulator laptop.

14 JDBC is short for Java Database Connectivity, and it is a driver
to connect to and communicate with an Oracle database from
Java  code.  More  information  can  be  found  in  this  FAQ:
http://www.oracle.com/technetwork/topics/jdbc-faq-
090281.html

15 See  http://www.oracle.com/us/corporate/features/database-12c/
for more information.

The log server is running on a Windows 7 laptop with a Flume
agent  accepting events  from a Thrift  source (a standard  Flume
source that  can be connected to a Thrift  sink).  It uses  a larger
memory channel than the other agents,  as to not easily become
congested when accepting events from more than one agent. The
log  events  are  then  persisted  to  the  database  by the  custom
OrientDB sink.  Figure  5 illustrates  the  entire  setup  of the  lab
environment.

6. PERFORMANCE EVALUATION
Four  scenarios  were  simulated  for  the  purpose  of  evaluating
performance through stress  tests.  All  scenarios  were  simulated
with and without tracing enabled. The system clock was used for
measuring time during the simulations. All scenarios conform to
the flow described in figure 2, but not all correspond to realistic
transactions. Table 1 summarizes the executed scenarios. 

Scenario Transactions Database
trace logs

Middleware
trace logs

1 10 1000 520

2 10 10000 4220

3 10 0 2220

4 10 10000 60

Table 1: Description of the simulated scenarios.

The purpose of the simulation was to carry out a stress test; and
transactions  generating  more  than  1000  trace  logs,  like  the
simulated  ones,  do  not  occur  in  reality.  Scenarios  3  and  4  in
particular  do not follow the distribution of logging event found
during  normal  operation  (see  Usability  Evaluation  for  more
information).  They were designed to isolate  one single  type of
trace log to as large a degree as possible in order to evaluate the
Java  API  and  the  database  logging  separately.  Table  2
summarizes the results of the simulations.  Each simulation was
executed  10  times  with  logging  enabled  and  10  times  with
logging disabled. 

1 (en) 1 (dis) 2 (en) 2 (dis) 3 (en) 3 (dis) 4 (en) 4 (dis)

8330 6849 68173 57250 54132 53913 41122 26567

7753 6864 67736 56922 54007 54007 44523 15881

8393 6755 68567 56408 54023 54040 44351 42604

8471 6755 64039 56360 54007 53977 40374 11403

7628 6739 65833 56127 54007 53961 45615 11154

7550 6739 63383 55987 54039 54070 43914 11341

7519 6771 63664 56721 54008 54055 40747 11888

7269 6771 64272 56004 53960 53977 46567 13322

7535 6739 63415 56051 53977 54055 45210 12917

8623 6770 64238 56378 53973 54085 43649 12418

Table 2: Total execution times in milliseconds of all executed
simulations, both with tracing enabled (en) and disabled

(dis). Values that deviate from the trend of the result set are
marked with gray.

Figure 5: Illustration showing the setup of the simulator in a
lab environment.

http://www.oracle.com/us/corporate/features/database-12c/index.html
http://www.oracle.com/technetwork/topics/jdbc-faq-090281.html
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From these measurements an average overhead can be calculated
as  the  difference  between  the  average  execution  times  with
tracing  enabled  and  disabled  for  each  scenario.  The  most
interesting statistic is the overhead per traced point of interest in
each scenario, which is calculated by simply dividing the average
overhead  with  the  amount  of  trace  logs  generated.  Table  3
summarizes the results of these calculations.

Scenario  4  produced  2  highly  deviating  values  during
measurement  with  tracing  disabled.  The  result  set  with  these
values  included  has  a  standard  deviation  of  about  10,000
milliseconds,  which  is  5  times  higher  than  the  corresponding
standard  deviation  for  the  result  set  with  tracing  enabled  (at
about  2000  milliseconds).  Removing  these  deviating  values
produces a smaller result set with a standard deviation of around
1500 milliseconds, which is more similar in scale. This smaller
result set is also displayed in table 3.

Scenario Average
time (en)

Average
time (dis)

Average
overhead

Average
OH per log

1 7907.1 6775.2 1131.9 0.745

2 65332 56420.8 8911.2 0.627

3 54013.3 54014 ~0 ~0

4 43607.2 16949.5 26657.7 2.650

4 (adj) 43607.2 12540.5 31066.7 3.125

Table 3: Average execution time, overhead and overhead per
trace log for each executed scenario. The bottom row is

scenario 4 with the deviating values removed from the result.

The  difference  in  execution  time  in  scenario  3  indicated  that
overhead was slightly negative. Those result sets had a standard
deviation of around 50 milliseconds however, which is 100 times
larger in magnitude than the negative difference. The overhead is
therefore equivalent to 0 because it is too small to be measured.

Interpreting the data  directly indicates  that  scenarios 1,2 and 3
are  within  the  limits  of  what  has  been  considered  acceptable
overhead while scenario 4 is not.

7. USABILITY EVALUATION
A virtual machine running an installation of IFS Applications in a
sandbox environment was used to test the tracing application on
a  real  system.  Data  was  collected  by starting  IFS Enterprise
Explorer and pressing random buttons for between five and ten
minutes.  Earlier  tests  using  the  same  method  had  been  done
during implementation as a sanity check in order to ensure that
the  tracing application  was  correctly implemented  and  able  to
handle actual trace data. The usability was not evaluated during
these earlier tests, except for one observation made.

• The data  generated  was  very large  in  volume,  which
made the database very large in size. During an early
test,  the  tracing  system  ran  for  three  minutes  on  a
system  with  one  mostly  idle  client  active.  This
generated  a  database  of over  2000 vertices  and  over
19,000  edges.  The  database  reached  77MB  in  these
three minutes. If that is an indication of how fast data
accumulates,  one  mostly  idle  client  would  generate
42GB of data in one day. This exposes a need to filter
or reduce data.

During the actual usability evaluation further observations were
made,  focusing  on  the  usability  of  the  system  by  examining
generated trace data using OrientDB Studio.

• IFS  Applications  itself  generates  a  lot  of  trace  data
behind  the  scenes  requiring  no  user  input.  Active
clients execute background jobs even when idle which
generate  even more trace data.  This  means  that  most
traces are not interesting for diagnostics purposes.

• It is  very hard to find a way to programmatically and
generally  identify  which  traces  are  interesting  for
diagnostics  purposes.  Some  obvious  non-interesting
traces  could be identified,  but  many traces  look very
similar; no matter if they are a result of user interaction
or a periodic background job.

• Not  all  transactions  follow  the  model  described  in
figure 2. The tracing system handles these correctly as
well,  but it  is worth noting that this  can not be taken
for granted.

• Given that an interesting transaction can be identified,
it is easy to follow a trace and locate possible causes of
bad performance.

• It  is  very easy  to  find  transactions  that  have  frozen
before they have finished. A simple database query can
return a list of those.

• The data is structured in such a way so that it  allows
for a multitude of use-cases beyond diagnostics.  Easy
access  to  statistical  and  topological  information
generated  during  tracing  allows  for  unintended  use-
cases as a side effect. 

• The  tracing  application  is  fast  enough  to  follow  a
transaction in real-time.

One  thing  that  could  be  noted  was  that  the  bonus  feature  of
generating a  topological  map of the  system as  it  is  monitored
allows for many other uses beyond performance diagnostics. One
of these is simple visualization of the monitored system. When
combined  with  other  trace data,  it  could not only increase  the
readability  of a  trace  by allowing for  it  to  be  visualized  on a
topological  level;  it  could  also  be  used  for  such  purposes  as
generating  statistics  regarding  system  use,  finding  common
performance bottlenecks and finding points in the system where
transactions are likely to intersect.

The tracing application can be considered to be mostly useful for
its intended purpose, as well as potentially useful for some other
unintended  use-cases;  but  a  graphical  client  would  have  to  be
developed to put it to use.

Only  one  known  limitation  exists  which  causes  the  tracing
application to sometimes generate faulty trace data. In some rare
cases, traces where many different points of interest  in both the
middleware  and  database  layers  occurred  within  such  a  short
period of time that the system clocks of the machine running the
monitored application did not have the granularity to differentiate
their  time stamps,  were encountered.  Trace data  from different
layers arrive at the sink asynchronously. This is not a problem if
they have different time stamps, and most of the time not even if
they have the same time stamp.

The exception to this rule is were these sequences of trace logs
with the same time stamp contain multiple database calls as well
as programmatic database procedure events. In these cases, it is
not possible to correlate the procedures with the correct database
call  using  any available  data.  As such,  the  tracing application
generates the wrong sequence in these rare cases.

8. DISCUSSION
The implemented system mostly conforms to given demands. The
single  largest  problem is  the  amount  of  data  persisted  to  the



database. One idle user would generate 42GB of data per day. A
thousand idle users would generate 42TB instead. If those users
were not idle,  but instead actively used the system, this  would
amount to hundreds of terabytes per day which is unmanageable.

Aside from the  issue  of storage,  the  amount  of worthless  data
persisted  to  the  database  drowns  out  the  interesting  data  and
makes it  hard to find.  It is  also hard to find a reliable  way of
determining which traces are interesting,  which further  adds to
this problem. A possible solution is to partially take the approach
of specifying in advance how the system works, used for instance
by Pip [9], and base some kind of filtering mechanism on this.

One  possible  take  on  the  subject  of  reducing  the  amount  of
persisted data would be to reduce the points of interest taken into
account. This would have to be done in line with the priorities
laid down during the open card sort in such a case. However, the
amount  of  storage  space  saved  in  contrast  to  the  loss  of
usefulness makes such a solution unfavorable. 

Which point of interest a trace log is tied to has no relation to the
usefulness of the trace. Eliminating points of interest  across all
transactions would cause important data to be lost, and the more
data that could be saved by doing so, the more useful information
would  also  be  lost.  Therefore,  filtering  out  entire  useless
transactions  is  a  more fitting solution  in  order  to save storage
space.

8.1 Evaluating performance results
The data from the simulations indicate  a case where tracing in
the  database  layer  is  more  expensive  than  tracing  in  the
middleware.  This  result,  combined with the observations when
testing  the  tracing  application  with  a  real  installation  of  IFS
Applications puts into question the correctness of the simulator.

During testing with a real system, cases where entire procedure
chains  of  more  than  five  procedures  were  logged  within  a
millisecond  were  observed  in  trace  data.  Examining  the
simulation  data,  this  would  be  impossible  if  an  overhead  per
trace log of 2 or 3 milliseconds was a correct representation of
trace logging in the database layer. A procedure in the simulator
was represented as a consistent SELECT query16, either followed
by a call to the tracing API or not. The exact implementation of
the  calling  of the  tracing API in  IFS Applications  may not  be
accurately represented by this simulation.

Inside  stored  database  procedures,  the  logging  API  could  be
called asynchronously (similar to how tracing in the middleware
is  implemented).  This  was  not  possible  in  the  simulation,  and
therefore  the  simulated  tracing  in  the  database  layer  is
synchronous. If database tracing is asynchronous, a result more in
line with scenario 3 (where overhead could not be detected at all)
would  not  be  improbable.  This  is  also  consistent  with  the
procedure chains that both execute their code and call the tracing
API within a single millisecond that have been observed.

8.2 Necessary points of interest
The results of the open card sort proved to be mostly correct. The
database  points  had some ambiguity associated  with  them,  but
their usefulness in a diagnostics situation proved to be significant
enough to overcome the limitations of the ambiguity. Very rarely
did traces become truly ambiguous or wrong, and some observed
traces  (particularly  ones  with  more  than  30  database  points)
would  be  very hard  to  make  sense  of without  the  presence  of
procedure call chains.

16 The  exact  statement  was  “SELECT  'hello  world'  FROM
DUAL”, thought to execute in close to constant time.

Regarding the middleware points dubbed as possibly redundant,
they  proved  to  have  great  usefulness  for  the  purposes  of
representing  and  visualizing  data.  The  presence  of  a  known
starting  point  as  well  as  a  known  endpoint  enabled  non-
ambiguous representation of transaction completion.

Therefore, we consider this implementation to largely support the
validity  of  the  open  card  sort,  with  the  reservation  that  the
middleware  points  dubbed  possibly redundant  are  in  fact  very
useful to the tracing application.

Also, observed traces which did not follow the predefined flow
still  generated  some kind of trace data  that  could be analyzed,
which supports that all examined cases were handled by logging
the points of interest suggested by the open card sort but that all
points are not always needed.

8.3 Threats to validity
Aside  from the  uncertain  accuracy of the  simulator,  discussed
earlier,  one of the biggest threats to the validity of the study is
the  use  of  OrientDB  Studio  during  testing  and  usability
evaluations. The lack of a graphical client to visualize the trace
data in a more appropriate manner caused us to use the database
administration  tool  that  ships  with  OrientDB,  capable  of
visualizing graphs on an HTML canvas.

Aside from having a multitude of bugs, the way in which the data
is visualized is quite generalized and not adapted for the purpose
of  visualizing  application  traces.  The  fact  that  the  usability
turned  out  to be  decent  while  using such an  ill-fitting  tool as
OrientDB Studio may indicate that  the usability had been even
better with an actual graphical client developed for this purpose.
However, it may also be a sign that the implementation has been
biased  towards  producing  data  in  a  format  that  can  be  made
comprehensible in OrientDB Studio. As such, the representation
may be less fitting if an actual client had been used.

Another threat to validity comes from the sheer amount of traces
generated and the fact that only a small subset of these have been
examined during the usability evaluation. Even if no completely
incomprehensible traces have been found, it is still possible that
they exist. 

9. CONCLUSIONS
The tracing system mostly performed in a satisfactory way with
regards to both RQ1 and RQ2. There were some unanticipated
problem  areas,  discovered  during  usability  evaluation.  This
means  that  if  this  tracing  application  was  to  be  taken  into  a
production  environment  and  used  for  diagnostics,  something
would have to be done to alleviate the issues regarding storage in
order for the tracing system to be of any kind of use.

Aside  from  these  problems  the  system  performed  well  and
exposed some unexpected use-cases for the gathered trace data.
The results indicate that the system has potential  if it is refined
and some of the worst problems are addressed. 

The answer  to RQ1 must  be dependent  on the  purpose of the
tracing. The traces where at least most of the predefined points of
interest are present are the most useful, but even a trace lacking
most of them is possible to follow in some way.

Generally, only one coherent trend could be observed. The kind
of data  needed  for a trace to be completely accurate  is  for all
events  which  can  be  nested  to  log both  when  they begin  and
when they end. Since programmatic database procedures cannot
log  when  they  return,  any trace  involving  these  is  somewhat
ambiguous even if it can still be followed and analyzed.



Observations  do  however  support  the  notion  that  the  current
implementation  allows  for  all  examined  cases  to  produce
coherent trace data.

Furthermore, we consider this implementation to meet the given
performance  demands;  and  that  this  implementation  as  such
satisfies the requirements consistent with a valid answer to RQ2.
Also  supporting  this  notion  is  that  the  more  realistic  traces
generated during the simulation, being scenarios 1 and 2, did in
fact meet the requirements.  Scenario 4 simulated an unrealistic
case  of  10  minimal  middleware  transactions  executing  1000
database  procedures  each.  Nothing like that  has  been observed
with real trace data.

9.1 Future work
Several areas of future work remain unexplored in the context of
this research. One of the main areas discovered to be of interest
is how to differentiate which transactions are interesting with the
amount of information available in the trace data. This is a main
usability  concern,  and  ways  to  efficiently  sort  out  traces
generated  by background  jobs  is  pivotal  to  the  usability  of  a
tracing application.

If this sorting is done before persisting trace data to the database,
it  would greatly reduce the amount of storage needed and thus
alleviate the problem of the database growing too fast at least to
some degree.

Evaluation of trace representation using a graphical client might
be warranted in order to correct any bias introduced by OrientDB
Studio. The main purpose of this work was to collect the required
data and to represent  it  in some way. While this  representation
most  likely  works  using  a  graphical  client,  it  may not  be  an
optimal  representation  if  the  visualization  tool  is  implemented
along with it. 
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1. COMPONENTS OF THIS PROJECT
The  implementation  of  the  tracing  system  was  composed  of
multiple  parts  of varying size and complexity. These  are  listed
and described below.

1.1 Java components
Most of the work during this project is centered around the Java
components,  making up  easily 90% of the  body of work.  The
Java components are:

1.1.1 The OrientDB sink
This  component  is  easily  the  largest  and  most  complex  Java
component.  It  is  responsible  for  persisting  the  trace  data  to
OrientDB and building all logical connections. The final version
is 885 lines of Java source code and it has been rewritten from
scratch  twice.  During  the  time  when  this  was  worked  on,  all
other Java components aside from the simulator were completed
in parallel.

1.1.2 The JDBC table source
This  component  is  responsible  for  periodically  consuming the
entire  table  of  database  logs  and  sending  them  into  Apache
Flume as Flume events. It contains a queue where all consumed
events are stored. This is because Flume consumes a single event
at a time and it is undesirable to query the database too often. It
is made up of 266 lines of code. It was implemented in less than
a week.

1.1.3 The JSON line event deserializer
This  component  is  responsible  for  deserializing  JSON  events
from a file storing one JSON object per line.  This is to allow a
standard Spooling directory source to consume events generated
by the tracer module and deserialize them in a format that makes
sense. It is made up of 109 lines of code in its final version and
has been rewritten from scratch once (prior to that it was larger).
It took three days to implement the first time and another two to
rewrite.

1.1.4 The tracer API module
This component is responsible for exposing an API that produces
files that can be read using a spooling directory source with the
JSON  line  event  deserializer.  It  is  called  from  within  IFS
Applications and contains  some JavaDoc strings for clarity and
ease of use. It is made op of around 490 lines of source code and
took around two weeks to fully implement.

1.1.5 The simulator
The  simulator  is  a  java  program used  during  the  performance
evaluation. The final version is made up of 405 lines of source
code, but code quality was not a concern during implementation.
The last version of the simulator was implemented in less than a
day.

1.2 Trashed components
Some java components were explored and partially implemented
but were abandoned at some point. These did not make it into the
final version of the project.

1.2.1 Support for non-synchronized system clocks 
in the OrientDB sink
This  was  implemented  in  a  non-functioning  state  in  earlier
versions  of the  sink.  Three  weeks  of work  were  put  into this
before it was abandoned because the amount of available log data
did not allow for such a solution to consistently function.  This
was due to the problem of log events arriving asynchronously at
the sink, and the only way to properly sort them was using time
stamps.  The support for non-synchronized clocks was based on
the presence of a cache that is not part of the final solution as it
did not work at all with given data.

1.2.2 An alternative source for middleware logs 
and associated tracer API module
Writing serialized JSON to disk  may not be the most efficient
method to send logs to Flume. A variety of IPC-based solutions
were tried and scrapped because they had unsolvable problems
associated with them. One week was spent on this.

1.2.3 The old simulator
Before  the  simulator  that  was  actually  used  was  developed,  a
simulator  generating  random trace  data  was  being  developed.
Not  a  lot  of  time  was  spent  on  this,  and  a  few  parts  of  the
solution made it  into the final  simulator  which executed static
scenarios. There was also a non-Java component to the simulator
initially, in the form of an Arch Linux virtual machine that would
have  been  used  to  create  a  controlled  lab  environment.  This
proved  unnecessary  and  added  too  much  difficulty  to  the
implementation. Under a day was spent on configuring it.

1.3 Other components
A fem other components were part  of the project.  Building and
configuring Flume to execute  on Windows took around 3 days.
Aside from this,  a few stored database procedures were written
for demonstration purposes. These are small in code volume and
the time taken to implement them was no major issue.

2. DIVISION OF LABOR
During this thesis work two different ways of dividing labor have
been used at different stages of development. The first is divided
effort based on the natural division of the system and the second
is collaborative effort through pair programming.

2.1 Divided effort
Throughout most of the project there has been a natural division
between  different  tasks  based  on  how  the  system  has  been
structured. The main body of work has been located in both ends
of  the  system;  either  where  trace  logs  are  generated  and
consumed by Flume for transportation or at the central  logging
server where trace logs are persisted to OrientDB.



During the phases of the project where such a division of active
tasks was possible, the tasks were split  in such a way that they
could be done in parallel. The following procedure describes the
work flow used:

1. First thing in the morning, recap the day before.

2. Do you have a task? If so, do it.

3. Have  you  completed  your  task?  Claim  another  if
possible. Inform your partner.

4. Are you unsure  about  how to  proceed? Talk  to  your
partner.

5. Are you both still unsure about how to proceed? Talk to
IFS.

6. Have you or your partner ran into a difficult problem?
Discuss it  on a conceptual  level using pen and paper,
maybe use  pair-programming to solve it  if  it  is  very
important  to  be  on  the  same  page  regarding
implementation.

7. Do you need your partner  to complete his task before
proceeding? Finish that task using pair-programming.

8. Is there only one general task at hand,  or several  that
cannot be done in parallel? Use pair-programming.

9. Discuss the state of the system and a strategy for how
to proceed at the end of the day.

Most of the project has followed this procedure.

2.2 Pair-programming and collaborative 
effort
When it was impossible or impractical to divide the effort during
a stage of the project, pair-programming or some similar kind of
collaborative effort was chosen as a strategy.

When this was done it was fundamentally due to one or more of
these reasons:

1. It was important to be on the same page (common near
the  start  of  the  project,  also  applies  to  writing  the
report).

2. There  were no other  tasks  at  hand  (common towards
the  end  of  the  project,  also  applies  to  writing  the
report).

3. The task is complex enough to demand the attention of
both parties (happened sporadically).

4. Waiting for the other  party to complete  a  task would
otherwise  force one party to be idle  (happened rarely
and mostly near the start of the project).

The application of this technique to the report can not be called
“pair-programming”  because  it  does  not  involve programming,
but the collaborative effort (as we choose to call it in this case)
was structured in the same way.

2.3 Concrete division of tasks
Divided  effort  by  both  participants  in  different  stages  of
development where it is hard to separate what has been done by
what person is referred to as “mixed effort” below.

• The OrientDB sink: Programmed during divided labor
completely by Simon. Refactored for stability and style
towards the end using pair-programming.

• The  JDBC table  source: Programmed  during  divided
labor completely by Björn.

• The JSON line event deserializer: Programmed during
divided labor completely by Björn.

• The  tracer  API module:  Programmed  during  divided
labor completely by Björn.

• The  trashed  non-functioning  IPC  sources  and
associated tracer  module: Programmed during divided
labor completely by Björn.

• Stored OrientDB functions: Mixed  effort  (hard to say
who wrote what).

• Setup of Apache Flume on Windows: Mixed effort with
some  collaborative  effort  in  the  beginning.  Mostly
Simon.

• Setup  of  simulator,  including  trashed  ideas:  Mixed
effort.  Mostly Simon on the  setup  of the Arch Linux
virtual machines that  were not used.  Mostly Björn on
the  random  simulator  that  wasn't  used.  The  final
simulator  was  developed  from  small  scraps  of  the
trashed random simulator using pair-programming.

• The  report.  Fully  written  together  by  collaborative
effort. No pieces written individually.

3. WORK FLOW MOTIVATION
The  method  was  chosen  mostly  based  on  practicality.  Pair-
programming has  many advantages,  but  was mostly unsuitable
for this project. Two of the main advantages of pair-programming
are [2]:

1. The improved quality and readability of the code.

2. The  improved  overview  and  understanding  of  the
system for all parties involved.

The main problem with pair-programming in this project which
caused us not to adopt it as a main method was that the different
components were interdependent. To be able to test one of them
in terms of functionality, a working version of at least one other
component was usually needed.

This (combined with the fact that only two people were working
on the project) made it very impractical to use the method as it
would result in one out of two cases:

1. The  entire  team  implemented  a  large  portion  of
functionality without an ability to test it.

2. The entire  team would constantly be switching tasks,
making  it  difficult  to  wrap  their  heads  around  more
complex problems.

The method mainly used instead was the divided labor described
above.  When one component  was  ready for some functionality
tests, the other one would also be ready for the same tests. This
allowed  for  much quicker  iterative  testing,  which  would  have
been impossible using pair-programming. 

Regarding  the  overview and  understanding  of the  system,  the
interface-based  programming paradigm which was  enforced by
the  framework  associated  with  Apache  Flume  caused
implementation  details  from  other  components  to  be  fairly
unnecessary during the  implementation  of any one component.
The fact that the interfaces implemented were also specified by
Apache  Flume  and  as  such  could  not  be  changed  during
implementation also made it more relevant to discuss the system
in very general terms.

How  to  send  and  receive  data  was  never  an  issue  as  the
interfaces already specified that. It was always rather a question
of what  data  to send and how to format  it.  This  made it  more



useful to discuss the system at a much higher level, especially as
the implementation details changed often and without notice.

As such,  implementation  was  left  at  a  component  level  which
only made it necessary to understand the structure and high-level
functionality of the system during development.  Knowing what
the JDBC source does is more relevant than knowing how it does
it  when working on the OrientDB sink,  for example (the other
way around is also true).

3.1 The agile process during development
Early in  the  project,  development  was  done  without  much in-
depth  understanding  of  the  functional  demands  posed  by IFS
Applications on the tracing system. As such, the need for agility
was emphasized.

It was not only a matter of understanding the high-level structure
of the system, but also a matter of being able to change it quickly.

No scrum board  has  been  used  for task  management,  because
implementation demands have changed too rapidly. The process
has  been  in  line  with  very rapid  Extreme  Programming aside
from the lack of pair-programming in most cases [1]. Functional
demands were very prone to change as problems were discovered
during acceptance tests, and sprints were a single week in length.

As such, most of the time there were only very few active tasks at
any given time,  which made actual  SCRUM [3] using a board
redundant. Priorities also had a tendency to change between task
completions  and  sometimes  during  the  course  of a  single  day
between daily standups, which made the use of a board in order
to  prioritize  several  tasks  into  nothing  but  unnecessary
administration.

Two daily standups were done every day, one in the morning in
order  to  recap  and  one  at  the  end  of  the  day  in  order  to
synchronize priorities and tasks. One meeting with IFS was held
every Monday in  order  to demonstrate  the current  state  of the
project  and  to  set  goals  until  next  meeting.  This  made  sprint
length into 1 week, effectively.

This process made all  development into a series  of small,  low-
risk gambles where losses could be cut short quickly. Iteratively,
the gambles that paid off shaped themselves into a prototype.

3.1.1 Why do it this way?
This rapid development process is consistent with a project of an
experimental nature. Quickly exploring possible solutions in this
way where a losing gamble can be discarded  quickly provided
the project with many different explored avenues, as seen in the
discarded parts of the project.

The  ability  to  quickly  discard  a  dysfunctional  solution  was
intentional as knowledge of the problem and associated demands
was known to be very meager  in  the beginning of the  project.
Flume was given three days to build and run on Windows before
being  discarded,  and  this  was  close  to  happening.  Had  this
happened,  the  project  would  have taken  a  drastically different
turn.  In fact, not a single line of code written would have been
the same.

The same applies for every chosen component. Only the ones that
worked and met at least a sizable portion the demands within a
relatively short  period of time (measured in days) made it  into
the  solution.  Gradually,  the  method  improved  and  refined  our
understanding  of the  problem enough to make  more  informed
decisions.  It  also  limited  the  number  of  options  available,  as
increasingly  large  portions  of  the  implementation  had  already
been decided upon. This gradually reduced the risks taken during
the small gambles.

Parallel work during these experimental phases also led to being
able to try more options in the same amount of time. This is due
to the nature of parallel trial and error in different domains. Even
if pair-programming produces better code in less time, the idea of
these gambles was to ditch bad solutions quickly. Improved code
quality in  these  cases  may have upgraded  terrible  solutions  to
just being bad or mediocre (bordering on bad), which in turn is
contradictory to the purpose as it may not have been abandoned
as quickly (or at all) if this was indeed the case.

What made this a fitting method was, in short,  that this project
was a completely blank slate in the beginning. And the fact that
many different approaches had to be tried in a short time.

3.2 Use of pair-programming
Pair-programming had a purpose in some situations during the
project.  The  main  portion  that  would  have  benefited  the  most
from  pair-programming  would  have  been  the  OrientDB  sink.
This was not the case from the beginning, however, as too little
was known about the system during this time to build a sink that
functioned according to specifications. As such, experiments had
to be undertaken even at the sink side of the implementation.

This caused the sink to be completely rewritten twice. The first
few gambles did not pay off, so the sink was rewritten once early
in the project. The second time, a sound logic had started to take
shape as a result  of experimentation and it was known how the
sink could work properly. The problem was that the code was so
convoluted at this stage that the sink would have to be rewritten
again for the emergent sound solution to be readable and of good
quality.

For  this  purpose,  pair-programming  was  suitable.  The  second
time  the  sink  was  rewritten,  quality  and  readability  were
prioritized  and the  risk  of change was significantly lower than
earlier  in the project. This was done through pair-programming
to produce the final version of the sink.

3.3 Planning the work flow
Implementing the system in this  way was not planned in great
detail from the start,  but like the system itself it came into form
through a series of small, pragmatic decisions during the project.
The most important thing from the start, once the open card sort
had  been  carried  out,  was  to  begin  implementation.  The  work
flow formed through the same iterative process that shaped the
system.

Bad  work  methods  were  quickly  discarded  and  those  that
produced  results  were  retained.  This  formed  the  method
described  above,  reminiscent  of  Extreme  Programming.
Although,  the  phrase  “Extreme  Programming” was  never  used
until the similarities were noted when the project was practically
finished.

The main purpose of the work flow was exploratory; to minimize
the risk of change, failed attempts and wrongful assumptions. To
plan  work  flow  ahead  of  time  was  counter-productive  with
regards to this purpose.

3.4 About the possibility of test-driven 
development
Test-driven development was not even attempted at any stage of
the  project.  The  inherent  impossibility  of  predicting  enough
details about what the result  of an operation should be made it
very difficult to write any kind of unit-tests ahead of time.

The other major problem with unit-testing was the fact that the
implemented parts of the system did not do much at all on their
own but required the rest  of the system to be present in order to
do anything at all. The OrientDB sink could not be tested, aside



from some minor implementation details, outside of Flume. The
same is true for most other components in one way or another.
The  fact  that  almost  all  parts  of  the  interface  do  not  return
anything also did not help in this respect.

This exposes several limitations with regards to unit-testing. The
contract  is  very small  and the  desired  result  is  only consistent
based on earlier events. Testing the implementation goes against
the  paradigm of interface-based  programming.  This,  combined
with  the  uncertainty  regarding  any  made  assumptions  about
correct behavior made test-driven development impossible or at
least very hard in the context of this project.

Another aspect that made the test-driven development paradigm
undesirable  in  this  case  was  the  fact  that  the  project  was
exploratory in  nature.  As many aspects  as  possible  should  be
covered in an exploratory project, and one of the main purposes
is  to  discover  emergent  problems  and  approaches  during
development.  Test-driven  development  does  not  further  this
purpose.

All in all,  tests  performed by manual examination of generated
traces proved more in line with the purposes and limitations of
the project.

4. WORK FLOW EVALUATION
Generally, the work flow has been satisfactory with regards to the
purposes of the project.  The purposes,  however,  are key to the
efficiency of a work flow that works as described. This work flow
would not be fitting for all kinds of projects, or even most kinds.

4.1 When it works
Generally, the projects  where the properties  coincide in  a very
specific way are  the only ones that  would benefit  greatly from
this  kind of work flow. This  project  fit  all  the  criteria,  and as
such  it  was  appropriate  in  this  case.  Most  projects  would  not
meet these criteria.

4.1.1 Small team
The first prerequisite for the work flow to be sound for a project
is for the team to be very small, as in two or three people. Larger
teams  would  find  more  benefit  in  using  pair-programming  to
greater extent.  The main benefit of not using pair-programming
very  much  during  this  project  was  the  possibility  of  rapid
integration. With a larger team, this could be achieved anyway. In
a larger team, gaining an overview and synchronizing work at a
higher  level  would  also  have  been  much  harder  if  everybody
worked individually.

4.1.2 Short project with short sprints
As the  project  was  short,  there  was  only a  limited  amount  of
parts to implement. This kept the project from ever becoming too
difficult  for  any one  person  to  grasp  at  a  higher  level.  For  a

longer  project,  this  would  become much harder  and  require  a
different  work  flow,  for  example  a  more  formal  agile  method
using  a  SCRUM  board.  Short  projects  also  diminish  the
availability  of time  that  can  be  used  for  proper  planning  and
forces rapid development.

4.1.3 Low level of previous knowledge
If a known solution to the problem can be easily implemented by
the  team  based  on  familiarity  with  the  subject,  most  of  the
advantages  with  this  work flow would be  lost  as  the  need  for
blind experimentation diminishes drastically.

4.1.4 Blank slate project
A prerequisite  for this  work flow to be  useful  is  for very few
parts  of the solution to be finished or even decided upon. This
makes for a situation where many different possible approaches
present  themselves  to  the  team.  Thus  the  need  to  be  able  to
change approach quickly when these approaches do not perform
according to expectations upon further investigation.

4.2 Conclusions drawn
There is a kind of project that fits the above description, and that
is  a  low-resource,  short-term,  exploratory  prototype
implementation  done  for the  purposes  of trying something out
without investing too much into it. Putting one or two people on
a  short  exploratory project  is  not  unheard  of.  In  these  cases,
where the purpose is purely exploratory, this work flow is very
fitting.

The exploratory nature of such a project demands that as many
different angles as possible are explored. Administration can be
kept to a bare minimum during these projects as all time spent on
administrative tasks is time that is not spent exploring and trying
things out.

For any other type of project, this method should be more formal
and administered  in  order  to ensure  correctness  and quality as
well.
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